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Chapter 1
Computer Arithmetic

1.1
Approximations and Errors

There are several steps involved when trying to solve a problem computationally.
We first develop a mathematical model, then develop algorithms to solve the equations
numerically. Next, we implement them on a computer and run the simulations. Lastly,
we represent the results comprehensibly, interpret and validate them.

Our focus is on the development and implementation of algorithms. First, we discuss
some considerations one should have when solving a problem computationally.

Definition 1.1 (well-posed problem). We say that a problem is well-posed if a
solution exists, is unique, and varies continuously with the problem data.

Note that even when a problem is well-posed, it might be the case that relatively
small perturbations in the inputs lead to relatively large changes in outputs. We will
give a precise way to measure this sensitivity to perturbation in due course. While well-
posedness is a very desirable property, many important problems are inherently ill-posed.
It should be noted that well-posedness is a property of a mathematical problem, not of
an algorithm. We wish that our algorithms are stable. That is to say (briefly), one that
does not make the sensitivity of the underlying problem worse.

Example 1.1. We can consider the problem of computing the surface area A of the Earth
using the formula A = 4πr2. First, we model the Earth as a sphere. We then use an
estimate r = 6370 km, where r refers to the radius of the Earth, based on measurements
and prior computations. We will have to truncate the value of π at some point, and our
computer will use rounding when making computations.

Given a quantity Q and an approximation A, the absolute error is |Q−A| and the
relative error is |Q−A|

|Q| . Often, the relative error is more meaningful, especially when |Q| is
large. For |Q| near zero, the relative error may be inappropriate. It is useful to distinguish
accuracy from precision. An approximation is accurate when the error is small. Precision
refers to the number of significant digits. For example, x = 2.03048154248 is very precise,
but it is not a very accurate approximation of π = 3.14159265359 . . ..
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When analysing errors, it helps to separate sources of error. Some errors are due to the
data, while others arise from the computational process. Consider evaluating a function
f : R→ R at a point x. Often we only have an approximation x̂ to x, and we may also
replace f by an approximate function f̂ . Then,

Total error = f̂ (x̂)− f (x)
=
(
f̂ (x̂)− f (x̂)

)
+
(
f (x̂)− f (x)

)
= computational error + data error

Example 1.2. Say we wish to compute sin
(

π
8
)
. We use the approximations π ≈ 3 and

sin t ≈ t for small t. Then, sin
(

π
8
)
≈ 3

8 = 0.375. In fact, to three decimal places, we have
sin
(

π
8
)
≈ 0.383. Hence, the total error is −0.008, the computational error is ≈ 0.009, and

the data error is ≈ −0.017.
The computational error can be further subdivided into truncation error and

rounding error. That is,

computational error = truncation error + rounding error.

Truncation error results from approximations such as truncating series, discretisation,
or terminating an iteration early. Rounding error comes from finite-precision arithmetic.
Example 1.3 (finite difference). Let f : R→ R be a differentiable function. Consider the
forward difference

f ′ (x) ≈ f (x + h)− f (x)
h

.

By Taylor’s theorem, there exists x ≤ a ≤ x + h such that

f (x + h) = f (x) + f ′ (x) h + f ′′ (a)
2 h2

so
f ′ (x) = f (x + h)− f (x)

h
− f ′′ (a)

2 h.

If |f ′′ (t)| ≤M near x, then the truncation error is bounded by M
2 |h|. If the error in

each function value is bounded by ε, then the rounding error in the difference quotient
satisfies ∣∣∣∣∣f (x + h)− f (x)

h
−
(
f (x + h)± ε

)
−
(
f (x)± ε

)
h

∣∣∣∣∣ ≤ |ε|+ |ε||h|
= 2ε

|h|
.

Thus, the total computational error is bounded by

M

2 |h|+
2ε

|h|
.
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This illustrates a trade-off — taking |h| small reduces truncation error but increases
rounding error. In algebraic problems and finite-step algorithms, rounding error often
dominates; in limit-based processes like derivatives and integrals, truncation error is
often more significant.

We then discuss forward and backward error. Suppose we wish to solve the equation
y = f (x). The absolute forward error of an approximation ŷ is defined to be

|ŷ − y| ,

with the relative forward error defined analogously. Often, this is difficult to estimate
directly. Instead, view ŷ as the exact solution to a nearby problem ŷ = f (x̂) and define
the absolute backward error as |x̂− x|.
Example 1.4. If y =

√
2 and ŷ = 1.4, then

|∆y| = |ŷ − y| ≈ 0.0142 x̂ = ŷ2 = 1.96 |∆x| = |x̂− x| = |1.96− 2| = 0.04.

The backward error asks how much we must perturb the input to make the computed
answer exact. If that perturbation is small, the solution is still good.

We relate forward and backward errors via the condition number, defined as

condition number = |relative forward error|
|relative backward error| =

∣∣∣∣∣∣∣∣∣∣
f̂ (x̂)− f (x)

f (x)
x̂− x

x

∣∣∣∣∣∣∣∣∣∣
=
∣∣∣∣∆y/y

∆x/x

∣∣∣∣ .

In practice, we use the differential approximation

forward error = f (x + ∆x)− f (x) ≈ f ′ (x) ∆x,

so
condition number ≈

∣∣∣∣f ′ (x) ∆x/f (x)
∆x/x

∣∣∣∣ =
∣∣∣∣xf ′ (x)

f (x)

∣∣∣∣ .
For f (x) =

√
x, we have f ′ (x) = 1

2
√

x
, hence

condition number ≈
∣∣∣∣ x

2
√

x
√

x

∣∣∣∣ = 1
2 .

Definition 1.2 (ill-conditioned problem). A problem is ill-conditioned (or sensitive)
if the condition number is much larger than 1.
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Example 1.5. For f (x) = tan (x), we have f ′ (x) = sec2 x = 1 + tan2 x, so

condition number ≈
∣∣∣∣∣x
(
1 + tan2 x

)
tan x

∣∣∣∣∣ = |x (tan x + cot x)| .

This becomes problematic near integer multiples of π
2 . For instance,

tan (1.57079) ≈ 1.58058× 105 whereas tan (1.57078) ≈ 6.12490× 104.

1.2
Scientific Notation

We then try to understand how computers perform arithmetic so that we can see how
they are a source of error. The numbers one stores into a computer are not necessarily
the numbers the computer actually stores. For example, in single precision format, we
would have the following:

(i) Input: 0.23 but output: 0.2300000042
(ii) Input: 0.25 but output 0.2500000000

(iii) Input: 3√1.728 · 3√1.728 · 3√1.728− 1.728† but output 1.6403199× 10−7

(iv) Input 3√3.375 · 3√3.375 · 3√3.375− 3.375 but output 0
On our computers, some numbers can be represented exactly, while some cannot. Our
first step in understanding why is to understand different ways of representing numbers.

We are all used to the decimal system, where place values correspond to powers of
10. So,

833.71 = 8 · 102 + 3 · 101 + 3 · 100 + 7 · 10−1 + 1 · 10−2.

In decimal, ten is the base, while in binary, the base is two. Bases are typically integers
≥ 2, though this is not necessary. Note that if b is an integer ≥ 2, then the representation
of b in base b is 10. For clarity, parentheses and subscripts to indicate which base a number
is written with respect to. The subscripts are always written in base ten. For example,

(11.1)2 = (3.5)10 and (11.1)10 = (1011.0001100110011 . . .)2 . (1.1)

The second example in (1.1) already shows that things are not necessarily as simple as
they appear. Some other common systems, especially in Computer Science, are octal
(base eight) and hexadecimal (base sixteen). The ancient Sumerians and Babylonians
used base sixty, and we see remnants of this in modern timekeeping (sixty minutes in one

†The number 1728 is interesting. In the theory of elliptic curves, 1728 is the value of the Klein j-
invariant at τ = i, corresponding to the lattice Z + iZ. This case represents elliptic curves with complex
multiplication by the Gaussian integers Z [i], a key example in the theory of modular forms.
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hour, and sixty seconds in one minute). However, none of this explains why we should
care about other bases in the first place though. To understand why binary is important,
we need to learn a little about computer hardware. We will present a simplified overview
here.

Computer memory is made up of many small capacitors, each of which can take on
one of two voltage levels. We often think of these as switches that can be either up or
down, or boxes that can either be filled or blank. We call each box a bit, and a group of
eight such boxes a byte. We have

□︸︷︷︸
1 bit

and □■■■□□■□︸ ︷︷ ︸
1 byte = 8 bits

We can use this system to encode integers as follows:

(88)10 = (1011000)2 = □︸︷︷︸
sign

■□■■□□□︸ ︷︷ ︸
magnitude

(−88)10 = − (1011000)2 = ■︸︷︷︸
sign

■□■■□□□︸ ︷︷ ︸
magnitude

To move beyond integers, we could use a fixed-point system, which has a fixed number
of decimal places. That is,

(12.875)10 = (1100.111)2 = □︸︷︷︸
sign

■■□□︸ ︷︷ ︸
integer

■■■︸ ︷︷ ︸
fraction

.

Note that
(12.875)10 =

(103
8

)
10

=
(1100111

1000

)
2

so that dividing by eight in binary works like dividing by one thousand in decimal.
In practice, we use floating point rather than fixed point systems. Due to the finite
length of the memory, only finite real numbers can be represented exactly. That is, only
terminating decimals can be represented exactly.

In base ten, every terminating decimal can be written in the form

±amam−1 . . . a1a0.b1b2 . . . bn

where all the digits ai and bj are in {0, 1, . . . , 9}. Three quantities have to be recorded
when representing the number, namely the sign, the digits, and the location of the
decimal point.
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We consider a few important numbers encountered in Chemistry and Physics. For
example, the melting point of ice in Kelvin is 273.15, Avogadro’s number is approximately
6.022× 1023, the universal gravitational constant G carries a value of approximately
6.67× 10−11. Note that it is more economical to use scientific notation to denote
numbers. As such, using scientific notation, we denote the number

±amam−1 . . . a1a0.b1b2 . . . bn

by
±amam−1 . . . a1a0.b1b2 . . . bn × 10c.

It is required that am ̸= 0. There are three ingredients of the scientific notation, which
are namely the sign (either + or −), the digits (0, 1, . . . , 9), and the exponent e.

When storing a number on a computer, a certain amount of memory is assigned to each
part of the scientific notation. Computer arithmetic systems based off of this notation
are called floating point systems. We first consider a simple model — we assign one digit
to represent the sign, three digits to represent the significant figures, and two digits to
represent the exponent.

For example, numbers that can be exactly represented are

3.50, 4.56× 1099,−7.98× 1047, . . . .

On the other hand, numbers that cannot be exactly represented are

3.501, 4.562× 1099,−7.983× 1047,
√

2, π, sin 1, 4.56× 10−13.

Note that indeed, 4.56× 10−13 cannot be exactly represented because we need two digits
and a sign to represent the exponent and we have only allocated two digits (implicitly,
numbers like 3.50 and 4.56 have a + sign in front of them so one digit is used for storing
these signs). As such, how can we get negative exponents? We discuss two methods.

• Method 1: Use one of the two digits to store the sign
• Method 2: Since two digits can be used to denote numbers from 0 to 99, we can

change the interpretation of these two digits by regarding the exponent as this
number minus 49, so that the exponent ranges from −49 to 50.

It turns out that method 2 can represent more possible exponents, and the representation
is as follows:

(−1)s × a0a1a2 × 10e1e2−49

Here, s denotes the sign, a0, a1, a2 denote the significant figures, and e1, e2 denote the
exponent. or now, in order to avoid the different representations of the same number, we
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allow a0 to be zero only when e1 = e2 = 0. Later, we will treat this case more carefully
as there are some unexpected subtleties. In our simple model, we have the following:

• Smallest positive number: 0.01× 10−49

• Greatest negative number: −0.01× 10−49

• Second smallest positive number: 0.02× 10−49

• Second greatest negative number: −0.02× 10−49

• Greatest positive number: 9.99× 1050

• Smallest negative number: −9.99× 1050

• Second greatest positive number: 9.98× 1050

• Second smallest negative number: −9.98× 1050

We can represent the above (and some other numbers) using a table as shown.

0.00× 10−49 0.01× 10−49 . . . 0.99× 10−49

1.00× 10−49 1.01× 10−49 . . . 9.99× 10−49

1.00× 10−48 1.01× 10−48 . . . 9.99× 10−48

...
... . . . ...

1.00× 1049 1.01× 1049 . . . 9.99× 1049

1.00× 1050 1.01× 1050 . . . 9.99× 1050

Numbers where the first digit is allowed to be zero are said to be subnormal or denormal.
On the other hand, numbers where the first digit is non-zero are called normal.

As mentioned, computers use binary numbers instead of decimal numbers. We give a
few more examples.

Example 1.6. We have

(10101)2 =
(
1 · 24 + 0 · 23 + 1 · 22 + 0 · 21 + 1

)
10

= (16 + 4 + 1)10

= (21)10

So, the usual 21 in base 10 can be written as 10101 in base 2.

Example 1.7. We have

(101.101)2 =
(
22 + 20 + 2−1 + 2−3

)
10

= (5.625)10

so the usual 5.625 in base 10 can be written as 101.101 in base 2.
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Proposition 1.1 (addition in base 2). Arithmetic with binary numbers is similar
to that with decimal numbers. Since binary representations use only 1 and 0, we
generally have to borrow and carry much more frequently. We have the following
results:

(i) (0)2 + (0)2 = (0)2
(ii) (0)2 + (1)2 = (1)2 + (0)2 = (1)2

(iii) (1)2 + (1)2 = (10)2 and (1)2 + (1)2 + (1)2 = (11)2

We briefly discuss Proposition 1.1. Note that (ii) is clear because this simply talks
about the commutativity of addition in base 2, which follows from the commutativity
of addition in base 10. For (iii), the key idea is that binary digits work like a counter
that resets once it reaches 2. Since the only digits are 0 and 1, adding 1 to 1 gives 0 in
the current place and carries 1 to the next place (just like how adding 1 to 9 in decimal
gives 0 in that place and carries 1).

We have similar properties for subtraction. For multiplication, we first ignore the decimal
point and multiply the numbers as integers, after which we determine the correct location
of the decimal point as normal. We illustrate the method with an example (Example
1.8).
Example 1.8 (multiplication in base 2). We shall prove that

(1.0111)2 × (10.11)2 = (11.111101)2 .

As mentioned, a common trick is to ignore the binary points and multiply as if both
numbers were integers. Note that (1.0111)2 has 4 fractional bits, whereas (10.11)2 has 2
fractional bits, so we say that the total number of fractional bits after multiplication is
4 + 2 = 6. Performing ordinary multiplication, we have

(10111)2 × (1011)2 = (11111101)2 .

All that is left is to insert the binary point. As mentioned, there should be 6 fractional
bits in the product. Starting from the right, we place the binary point 6 places left so
we have the map (11111101)2 7→ (11.111101)2

1.3
Floating Point Systems

Scientific notation for binary numbers is similar to the case for decimal numbers, but
we must remember that the place values are powers of two now. Consider the number

(±a0.b1b2 . . . bn × 10e)2
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If e < n,

(±a0.b1b2 . . . bn × 10e)2 =
(
±
(
a0 + b1 × 2−1 + b2 × 2−2 + . . . + bn × 2−n

)
× 2e

)
10

=
(
±
(
a0 × 2e + b1 × 2e−1 + b2 × 2e−2 + . . .

+be−1 × 21 + be + be+1 × 2−1 + . . . + bn × 2e−n
))

10

= (±a0b1 . . . be.be+1 . . . bn)2

If e ≥ n, then

(±a0.b1 . . . bn × 10e)2 =

±a0b1 . . . bn 00 . . . 00︸ ︷︷ ︸
e−n zeros


2

.

As before, there are three components of the scientific notation, which are the sign (+
or −), significant digits (a0, b1, b2, . . . , bn), and the exponent e. Note that if we require
normalisation (that is, that a0 ̸= 0, then we must have a0 = 1). This will impact how we
store binary numbers in memory.

In the computer memory, every binary digit is called a bit. 1 byte is equivalent to 8
bits, 1 kilobyte is equal to 1024 bytes, 1 megabyte is 1024 kilobytes, and 1 gigabyte is
1024 megabytes.

Definition 1.3 (normalised binary number). A normalised binary number is of the
form

(±1.b1b2 . . . bn × 10e)2 = ± (1.b1b2 . . . bn)2 × 2e.

We consider a simple model of a binary system. We have one bit s for the sign (where
0 corresponds to + and 1 corresponds to −), three bits for the significand (b1, b2, b3), and
two bits e1, e2 for the exponent e. For the exponent, we can adopt the representation

00 7→ −1 01 7→ 0 10 7→ 1 11 7→ 2.

In this small system, we have the following expression for the binary number:(
(−1)s × 1.b1b2b3 × 10e1e2−1

)
2

All the positive numbers that can be exactly represented by this format include

(1.000)2 × 2−1 (1.001)2 × 2−1 . . . (1.111)2 × 2−1

(1.000)2 × 20 (1.001)2 × 20 . . . (1.111)2 × 20

(1.000)2 × 21 (1.001)2 × 21 . . . (1.111)2 × 21

(1.000)2 × 22 (1.001)2 × 22 . . . (1.111)2 × 22
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Example 1.9. For example, the string 0 0 1 1 0 1 represents(
(−1)0 · 1.1101× 1001−1

)
2

Also, the string 1 1 1 0 1 1 represents(
(−1)1 × (1.011)× 1011−1

)
2

= (−5.5)10

In particular, note that the number zero cannot be represented in this system, and
there is a large gap between zero and the smallest positive number. We will address both
of these shortcomings in due course.

In order to accommodate zero and other subnormal numbers, we introduce some special
rules into our system. Consider the representation

s e1 e2 b1 b2 b3 .

When e1 = e2 = 0, we change the meaning of the above bits to(
(−1)s × 0.b1b2b3 × 1001−1

)
2

.

Note that this is equivalent to(
(−1)s × b1.b2b3 × 1000−1

)
2

.

Example 1.10. For example, 1 0 0 0 1 1 represents(
(−1)1 × (0.011)× 101−1

)
2

= (−0.375)10 .

In typical floating point systems, the case when all the epxonent bits are equal to
1 is also reserved for special use, which again we shall discuss in due course. Using the
notions earlier, we now discuss the accuracy of a floating point representation.

Definition 1.4. Any number p provided to the computer is approximated to the
closest representable number, which we denote fl (p). We can measure the absolute
and relative error of this approximation, which are

absolute error = |p− fl (p)| and relative error = |p− fl (p)|
|p|

if p ̸= 0 (1.2)

Example 1.11. For example, if p =
√

2 ≈ 1.414, then fl (p) = 1.375, where we note that
(1.375)10 = (1.011)2. Recall from our earlier discussion that we allocate three bits for
the significand. Hence,

absolute error ≈ 0.0392 and relative error ≈ 0.0277,

where we used (1.2).
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In terms of relative errors, subnormal numbers are less accurate than normal
numbers. Pictorally, if 1 < |p| < 2, we can estimate the relative error can be estimated
using

|p− fl (p)|
|p|

≤ 2−4

1 = 2−4.

If 2 < |p| < 3.75, we can estimate the relative error by

|p− fl (p)|
|p|

≤ 2−3

2 = 2−4.

If |p| < 1, the relative error may be larger than 2−4. For this system, the number 2−4 is
referred to as the machine epsilon, and we will use the symbol εmach to refer to it. Note
that we always have

|fl (x)− x|
|x|

≤ εmach.

We can compute the machine precision using

εmach = 1
2 × (base)1−significant figures = 1

2b1−n.

In our example, we have
εmach = 1

2 × 21−4 = 1
16 .

Converting a real number to a float usually involves some rounding. Generally, we would
want fl (x) to be the float closest to x. For example, in the system described above, we
have fl (1.414) = 1.375 and fl (3.70) = 3.75.

• What about a number that is equally spaced between two floats like 2.125? What
about numbers that are larger than our largest float?

To address the first case, we have to adopt a rounding rule. The simplest rule is called
chop rounding, where we simply leave off any bits beyond the number we are able to
store. For example,

(2.125)10 = (10.001)2 =
(
1.0001× 101

)
2

.

For normal numbers, we only need to store the bits after the decimal point, so under
chop rounding, we would store 000 and just forget about the 1 at the end.

In practice, floating point systems usually use the round to even rule. We briefly explain
this. It is helpful to think about the circumstances under which a number can be exactly
halfway between two floats. This occurs only when the number has one more bit than can
be stored, and that bit is a 1. Chop rounding as above, corresponds to always rounding
down in this circumstance. Under round to even, we choose to round either up or down
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to make the final stored bit 0 (0 is even and 1 is odd).

We now handle the case when numbers are too large. A more general floating point
system would look like as follows:

s e1 e2 . . . em b1 b2 . . . bn−1

Interpreting such strings involves some complicated rules, so we shall state an example
of such a system involving the single-precision floating-point format, which has m = 8
and n = 23.
Example 1.12 (single-precision floating-point format). The size is 32 bits, or 4 bytes. The
minimum positive number is(

0.00 . . . 01× 101−1111111
)

2
= 2−149 ≈ 1.40× 10−45.

On the other hand, the maximum positive number is(
1.11 . . . 11× 1011111110−1111111

)
2

= 2127 ×
(
2− 2−23

)
≈ 3.40× 1038.

For normal numbers, the relative error is less than 2−24 ≈ 5.96× 10−8. Normal numbers
typically have 7 or 8 decimal significant digits.

As mentioned previously, subnormal normal numbers generally have less accuracy
than normal numbers. In this system, we have that the greatest subnormal number is
≈ 1.1754942107× 10−38, and the smallest positive normal number is ≈ 1.1754943508×
10−38. In a floating point system, the smallest positive normal number is called the
underflow level. If L is the smallest (i.e. most negative) exponent, then the underflow is
equal to bL, where b is the base. The largest representable number is called the overflow
level. If U is the largest exponent, then the overflow is bU+1 (1− b−n), where b is the
base and n is the number of significant digits. When the result of a computation (after
rounding) is larger than the overflow level, we say that the computation overflows, and
the result is stored in a special way.

The sequence

0 1 1 . . . 1 0 0 . . . 0 is interpreted as +∞,

whereas the sequence

1 1 1 . . . 1 0 0 . . . 0 is interpreted as −∞.
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When computations overflow, they are assigned one of two special values, depending
on the situation. In other cases, where the computation cannot be performed at all, we
return a different special value instead. For example, the sequence

0 1 1 . . . 1 b1 b2 . . . bn−1

means NaN (not-a-number) if any of the bk is non-zero. Some examples that would return
NaN are

√
−1 and arcsin 1.1. Note that computers cannot do complex arithmetic, so in

a more sophisticated system,
√
−1 would not be a problem. Some examples that would

overflow are
1

+0 = +∞ and log (+0) = −∞.

Also, note that there are two representations of zero, which are

0 0 0 . . . 0 . . . 0 which corresponds to + 0 and

1 0 0 . . . 0 . . . 0 which corresponds to − 0

With all of this in hand, we can consider how our computer performs arithmetic
computations. Suppose the single-precision floating-point format is used. Let x = 5

7 and
y = 1

3 , and consider x + y. When computers receive the instruction to compute x + y,
the values of x and y have already changed to fl (x) and fl (y). We have

fl (x) = (0.10110110110110110110111)2

fl (y) = (0.0101010101010101010101011)2

Then, the value of fl (x) + fl (y) is

(1.0000110000110000110000111)2 .

However, the computer cannot produce this result because the aforementioned number
cannot be represented exactly in single-precision floating-point format — another fl has
to be applied to fit the format. That is,

fl (fl (x) + fl (y)) = (1.00001100001100001100010)2 .

One can compute the absolute error, but we leave it as an exercise.
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Definition 1.5. For simplicity, we define

x⊕ y = fl (fl (x) + fl (y)) ,

x⊖ y = fl (fl (x)− fl (y)) ,

x⊗ y = fl (fl (x)× fl (y)) ,

x⊘ y = fl (fl (x)÷ fl (y)) .

The operations in Definition 1.5 satisfy some of the familiar properties, namely

x⊕ y = y ⊕ x x⊖ y = − (y ⊖ x) x⊗ y = y ⊗ x.

However, in general,

(x⊕ y)⊕ z ̸= x⊕ (y ⊕ z) and (x⊕ y)⊗ z ̸= (x⊗ z)⊕ (y ⊗ z)

Example 1.13. Let

x = 3.14159 e = 2.71828 z = 1000000.

Then, the results of (x⊕ y)⊕ z and x⊕ (y ⊕ z) are different because

(x⊕ y)⊕ z = 1000005.875 and x⊕ (y ⊕ z) = 1000005.8125.

Some operations may induce significant numerical error.
Example 1.14. For example, consider the sum of two numbers with significantly different
magnitudes. That is,

106 ⊕ 12.3456 = 1.000012375× 106.

Example 1.15. Also, consider subtracting two numbers which are very close to each
other. For example,

8381.02⊖ 123.45⊗ 67.89 = −9.765625× 10−4.

Example 1.16. We can also consider the product of two small numbers. For example,
one recalls Newton’s law of gravitation from Physics, which states that the force of
attraction between two bodies of masses m and M and radius r apart is given by

F = G · Mm

r2 .

We have G = 6.674302× 10−11, m = 9.109384× 10−31, M = 2.18732× 1031, and r =
3.248678× 104. The exact value is

F = G · mM

r2 = 1.260067623482 . . .× 10−18.
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The numerical result is

(G⊗m)⊗M ⊘ (r ⊗ r) ≈ 1.260054153269× 10−18

G⊗ (m⊗M)⊘ (r ⊗ r) ≈ 1.260067698352× 10−18

because
G×m ≈ 6.07988× 10−41 < 1.1754942107× 10−38.

As such, G⊗m is represented by a subnormal number.
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Chapter 2
Systems of Linear Equations

2.1
Matrix and Vector Operations

Usually, Mathematicians look for ways to reformulate a problem from another field as
one in Linear Algbera as we have many tools to help us solve Linear Algebra problems.
One should be familiar with concepts from MA2001 Linear Algebra. Since our goal is
to understand algorithms, say we wish to examine the algorithm to compute a single
entry of a matrix product. Consider the matrices A ∈Mm×n (R), B ∈Mn×p (R), and
C ∈Mm×p (R). Here, we let

Mn×n (R) denote the set of m× n matrices with real-valued entries.

Suppose C = AB. Then,

cij =
n∑

k=1
aikbkj for all 1 ≤ i ≤ m and 1 ≤ j ≤ p. (2.1)

One can prove that the total number of multiplications required is mnp and the total
number of additions required is m (n− 1) p. Note that if A, B, C are square matrices,
then m = n = p, so the computational complexity is O

(
n3)† (this refers to the big

O notation, which we will briefly introduce in Definition 2.1). So, just like what we
mentioned about setting m = n = p, if our problem has some special structure, we can
exploit it to obtain a better algorithm.

A common problem in Linear Algebra is to multiply an arbitrary matrix by an upper
triangular matrix (or lower triangular). Suppose A ∈Mn×n (R) and B ∈Mn×n (R),
where B is upper triangular. Then, recall from (2.1) that the matrix entries of the
product AB is

cij =
n∑

k=1
aikbkj for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. (2.2)

Using this, we would end up multiplying by 0 many times, so the computational
complexity should intuitively be better than O

(
n3). However, this is not always true

†It is conjectured (but not proven that the best computational complexity for matrix multiplication is
O
(
n2).
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since a computer does not check what a number is before performing arithmetic. That
is to say, operations like adding 0, multiplying by 1 or multiplying by 0 still take up
the same computational resources as any other addition or multiplication. As such, the
person who designs the algorithm has to account for these cases to improve efficiency.

We lay out the entries of an upper triangular matrix B ∈Mn×n (R). Then,

B =


b11 b12 . . . b1n

0 b22 . . . b2n

0 0 . . . ...
0 0 . . . bnn

 so bkj

 ̸= 0 if k ≤ j;
= 0 if k > j.

As such, our computation can be made simpler. Replacing n with j in (2.2), we have

cij =
j∑

k=1
aikbkj for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

One can prove that

the total number of multiplications is mn (n + 1)
2 and

the total number of additions is mn (n− 1)
2

One would find the formula for the sum to n terms of an arithmetic series useful. That
is,

1 + 2 + . . . + n = n (n + 1)
2 . (2.3)

As expected, we can consider other interesting setups. Now, suppose both A and B are
n× n lower triangular matrices. One should be convinced that

aij

 ̸= 0 if i ≥ k;
= 0 if i < k

.

A similar fact can be said for bkj . Again, to save computational cost, we identify the
zero entries in the matrix product and skip the computation of these entries. Similarly,
for non-zero entries, avoid adding zero terms in the sum cij . Since we are supposed to
compute the sum

cij =
n∑

k=1
aikbkj for 1 ≤ i ≤ n and 1 ≤ j ≤ i
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where aik ̸= 0 if i ≥ k and bkj ̸= 0 if k ≥ j, then

cij =
i∑

k=j

aikbkj for 1 ≤ i ≤ n and 1 ≤ j ≤ i.

One can prove that

the total number of multiplications is n (n + 1) (n + 2)
6 and

the total number of additions is n (n− 1) (n + 1)
6

where the formula for the sum of squares of the first n positive integers is useful. As this
appears somewhat more interesting than the sum of the first n positive integers (2.3),
we present the former as a theorem (Theorem 2.1).

Theorem 2.1 (sum of squares of first n positive integers). We have

12 + 22 + . . . + n2 = n (n + 1) (2n + 1)
6 .

At this juncture, we also give a definition for the big O notation (Definition 2.1).

Definition 2.1 (big O notation). Let f (n) and g (n) be functions. We say that
f (n) = O (g (n)) if there exists exists M ∈ R+ and N ∈ R such that

|f (n)| ≤Mg (n) for all n ≥ N.

2.2
Systems of Linear Equations

Recall from MA2001 the concept of solving a system of linear equations. In fact,
this is one of the most fundamental problems in Applied Mathematics. In due course,
we would see that many problems (in particular, involving numerical integration) can
either be reduced to solving a system or involve solving a system along the way.

Generally, a system of linear equations is given by a compact notation. That is,

Ax = b,

where A ∈Mm×n (R), x = (x1, . . . , xn) and b = (b1, . . . , bm). In general, if m > n and
the solution to the system exists and is unique, then only n equations are required to
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determine the solution.

Of interest is to really study how a small change in inputs affects the outputs. For
example, say we consider the following system of equations{

x + y = 2
x− y = 0

which has solution x = 1 and y = 1. If we change b from (2, 0) to (2.01, 0), then the
solution changes slightly — x = 1.005 and y = 0.995. On the other hand, if we consider
another system of equations as follows{

x + y = 2
1.000001x + y = 2

we see that the coefficient matrix is nearly singular, i.e. det (A) is very close to 0. As
such, tiny changes in b may result in significant changes in x and y. As such, we wish
to study the concept of continuous dependence rigorously.

For a system of linear equations Ax = b, we say that the output vector is x, whereas
the inputs are b and A. We will consider each input separately. To proceed with our
discussion, we need to figure out how to measure the size of x, b, A.

Recall from MA2001 that the Euclidean norm of any vector x ∈ Rn is

∥x∥2 =
√
⟨x, y⟩ =

√√√√ n∑
i=1

x2
i .

Here, we used the notion of an inner product, which is a generalisation of the dot product
of two vectors. In particular, in Rn, we have ⟨x, y⟩ = x · y, where · denotes the usual dot
product. Several other norms are commonly used in practice†. For example, we have the
1-norm (can also be denoted by ℓ1-norm or the taxicab norm or the Manhattan norm)
defined by

∥x∥1 =
n∑

i=1
|xi|

and the infinity norm

∥x∥∞ = max
i
|xi| . (2.4)

†Will encounter in courses like MA3209 Metric and Topological Spaces, MA3210 Mathematical Analysis
II, MA4211 Functional Analysis, MA4262 Measure and Integration, etc.
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These are examples of p-norms

∥x∥p =
(

n∑
i=1
|xi|p

)1/p

.

As for the infinity norm (2.4), it is defined to be the following limit:

lim
p→∞

∥x∥p = ∥x| |∞

There is a nice way to visualise these p-norms. Please refer to this article by B. Chivers.

Here is a different perspective on linear systems. We can think of A as a map from Rn

to Rn (think of it as the matrix representation of a linear transformation T : Rn → Rn,
and recall from MA2001 that indeed, the matrix is ∈Mn×n (R)). We can represent all
this information using a commutative diagram as follows (you may ignore it if you wish,
but it is attached for completeness). What it says is that x ∈ Rn and b ∈ Rn, and under
the map Rn → Rn with matrix representation A, it sends x to Ax = b, making the
following diagram commute:

Rn Rn

x Ax = b

A

∋ ∋

At this juncture, one might ask what is a good way to measure the size of a function.
Well, for linear functions like 4x and −6x, we can take the size to be the absolute value
of the coefficient of the term in x (so 4 and 6 respectively), but this feels like a lame and
non-rigorous way of doing things. How can we make sense of the term ‘size’?

Definition 2.2 (matrix norm). Consider the linear system Ax = b, where x, b ∈
Rn. For linear functions Rn → Rn, define the matrix norm as follows:

max
x ̸=0

∥Ax∥
∥x∥ = max

∥x∥=1
∥Ax∥ (2.5)

Here, ∥·∥ refers to any of the vector norms previously discussed.

It is not difficult to see why the two expressions in Definition 2.5 are equivalent.
Formally, we say that the norm in Definition 2.5 is an induced matrix norm. These can
be computed quite easily.
(1). If p = 1, we define

∥A∥1 = max
j

m∑
i=1
|aij |

https://medium.com/@bpchiv/visualizing-the-circles-of-p-norms-ab99411404a9
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which refers to the maximum absolute value of the column sum of A
(2). If p =∞, we define

∥A∥∞ = max
i

n∑
j=1
|aij |

which refers to the maximum absolute row sum
(3). If p = 2, then the induced matrix norm is known as the spectral norm†, and we

define it to be

∥A∥2 = σmax (A) = square root of the largest eigenvalue of ATA. (2.6)

This refers to the largest singular value of A‡.
We state some properties of the induced matrix norms.

Proposition 2.1. The induced matrix norms are submultiplicative and consistent.
That is to say,

∥AB∥ ≤ ∥A∥ ∥B∥ and ∥Ax∥ ≤ ∥A∥ ∥x∥ respectively.

Now that we have a method of measuring the sizes of the inputs and outputs to a
system of linear equations, we can discuss how changes to the inputs affect the outputs.
Consider a non-singular system Ax = b. Suppose that instead of b, we have a perturbed
b̂ with ∆b = b̂− b. Let x̂ be the solution to the perturbed system Ax̂ = b̂ with ∆x =
x̂− x. Then, we have

A (∆x) = A (x̂− x) = Ax̂−Ax = b̂− b = ∆b.

Equivalently, we have ∆x = A−1 (∆b). As such,

relative output error
relative input error = ∥∆x∥ / ∥x∥

∥∆b∥ / ∥b∥ = ∥∆x∥ ∥b∥
∥∆b∥ ∥x∥ =

∥∥A−1 (∆b)
∥∥ ∥Ax∥

∥∆b∥ ∥x∥ .

Since the induced matrix norm is consistent (Proposition 2.1), then

relative output error
relative input error ≤

∥∥∥A−1
∥∥∥ ∥A∥ .

Now, for any system Ax = b, we define the condition number to be κ (A) = ∥A∥
∥∥A−1∥∥.

The condition number is a worst case scenario for how errors in the input are magnified.
Also, there are potentially other cases, i.e. perturbing only A, and perturbing b and A
concurrently, but we will not discuss them here.

†Appears in singular value decomposition.
‡In a more general setting like for instance, over the complex numbers C, then the transpose in (2.6)

would be replaced by conjugate transpose A∗.
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2.3
Forward Elimination and Backward Substitution

Suppose we have a square matrix A which denotes the coefficient matrix of a system
of linear equations Ax = b. When performing Gaussian elimination to reduce A to a
row-echelon form, what we really obtain is an upper triangular matrix. This part of
Gaussian elimination is also known as forward elimination. From the pivot in the last
row of the augmented matrix, we then perform backward substitution to obtain the
solutions x1, . . . , xn.

One can prove that for the forward elimination process,

the number of divisions is n (n− 1)
2 and

the number of subtractions is n (n− 1) (n + 1)
3

For the backward substitution process,

the number of divisions is n and

the number of subtractions is n (n− 1)
2

In total, Gaussian elimination has time complexity O
(
n3) because

the number of divisions is n (n− 1)
2 + n = n (n + 1)

2 and

the number of subtractions is n (n− 1) (n + 1)
3 + n (n− 1)

2 = n (n− 1) (2n + 5)
6

However, there is an important consideration ignored in the naïve form of Gaussian
elimination and that is with regards to numerical stability — particularly the need for
what is known as pivoting to avoid division by zero or by very small numbers which
can lead to massive rounding errors. In Chapter 2.4, we will discuss a different way of
viewing Gaussian elimination, and that is from the lens of LU factorisation.

2.4
LU Factorisation

When performing Gaussian elimination in MA2001, recall that we transform A to a
row-echelon form, which is an upper triangular matrix U. Note that if A ∈Mn×n (R)
and say we have a system that can be solved without pivoting (see Chapter 2.5), we
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would need n− 1 elementary matrices E1, . . . , En−1 such that

En−1 . . . E1A = U.

We define L−1 = En−1 . . . E1 (which is known to be a lower triangular matrix) so that

L = E−1
1 . . . E−1

n−1,

where we used the fact that the inverse of a lower triangular matrix is also lower
triangular. This implies that A = LU and hence the name LU factorisation, where we
write A as the product of a lower triangular matrix and an upper triangular matrix.

We shall examine the significance of LU factorisation. Suppose A ∈Mn×n (R) and say
we need to solve the following systems of linear equations:

Axi = bi for all 1 ≤ i ≤ p

Then, we define X ∈Mn×p (R) and B ∈Mn×p (R) as follows:

X = (x1, . . . , xp) and B = (b1, . . . , bp)

This is equivalent to solving the system AX = B.
Example 2.1. Say we wish to find X ∈M4×2 (R) such that

1 1 0 3
2 1 −1 1
3 −1 −1 2
−1 2 3 −1

X =


4 5
1 6
−3 9
4 −6

 .

Then, we need to solve two linear systems. One can verify that the forward elimination
steps and coefficient matrices are the same for each system, but the right side of each
augmented matrix and the backward substitutions are different.

One can extend the above-mentioned process to find the inverse of an invertible
matrix. That is to say, suppose A ∈Mn×n (R) is invertible. Then, what collection of
systems of linear equations must it satisfy? Clearly, we need to find X ∈Mn×n (R) such
that AX = I†.

However, what if we wish to solve the system

Axi = bi where 1 ≤ i ≤ p

†Recall this procedure from MA2001.
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but we do not know all the bi at the start? If we were to apply Gaussian elimination
to each system independently, we would end up repeating a lot of work. Instead, we can
separate the computation into two parts as follows:

(i) Elimination step: Transform A into an upper triangular matrix U and record
the multipliers used in elimination.

(ii) Solve step: For each bi, apply forward elimination using the same multipliers,
then perform backward substitution.

When we eliminate the first column, we compute multipliers m21, m31, . . . , mn1 and
update the rows as follows:

R2 ← R2 −m21R1 R3 ← R3 −m31R1 . . . Rn ← Rn −mn1R1

The right side is transformed in exactly the same way. That is,

b2 ← b2 −m21b1 b3 ← b3 −m31b1, . . . bn ← bn −mn1b1.

Similarly, when we eliminate the second column using multipliers m32, m42, . . . , mn2, the
updates are

b3 ← b3 −m32b2, b4 ← b4 −m42b2 . . . bn ← bn −mn2b2,

and so on until the (n− 1)th elimination step.
Example 2.2. Say we consider the system

1 1 0 3
2 1 −1 1
3 −1 −1 2
−1 2 3 −1

x = b.

Applying Gaussian elimination to A yields

R2 ← R2 − 2R1

R3 ← R3 − 3R1

R4 ← R4 + R1

Then,

R3 ← R3 − 4R2

R4 ← R4 + 3R2
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This yields the upper triangular matrix

U =


1 1 0 3
0 −1 −1 −5
0 0 3 13
0 0 0 −13

 .

The multipliers are

m21 = 2 m31 = 3 m41 = −1 m32 = 4 m42 = −3 m43 = 0.

These can be stored in the strictly lower triangular part of A, which yields

L =


1 0 0 0
2 1 0 0
3 4 1 0
−1 −3 0 1

 .

Suppose b = (5, 6, 9,−6). Forward elimination yields

b2 ← 6− 2 · 5 = −4
b3 ← 9− 3 · 5 = −6
b4 ← −6 + 1 · 5 = −1

and then

b3 ← −6− 4 · (−4) = 10
b4 ← −1 + 3 · (−4) = −13

Lastly,
b4 ← −13− 0 · 10 = −13.

In general, once the multipliers mji are known from eliminating A, forward
elimination on the right-hand side is:

bi ← bi −mi1b1 −mi2b2 − . . .−mi,i−1bi−1 for all 2 ≤ i ≤ n.

After forward elimination, the system Ux = b can be solved by backwards substitution,
which yields

xi = bi − ai,i+1xi+1 − . . .− ainxn

aii
for all i = n, n− 1, . . . , 1.

To summarise, the multipliers mji depend only on A, not on b. We can pre-compute and
store L (containing mji) and U (upper triangular form of A). For each new b, perform
forward elimination using L, then backwards substitution using U. This is the basis of
the LU factorisation method.
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2.5
Pivoting

So far, we have presented Gaussian elimination in its simplest form. In practice,
complications arise that require extra care, most notably pivoting.
Example 2.3 (a zero pivot problem). Consider the system

x1 − x2 +2x3 − x4 =− 8
2x1 − 2x2 +3x3 − 3x4 =− 20
x1 + x2 +x3 =− 2
x1 − 2x2 +4x3 + 3x4 =2

We can represent the above information as a matrix (an augmented matrix is fine as
well). That is, 

1 −1 2 −1 −8
2 −2 3 −3 −20
1 1 1 0 −2
1 −2 4 3 2

 .

To eliminate the first variable x1, we perform some elementary row operations to obtain
the matrix 

1 −1 2 −1 −8
0 0 −1 −1 −4
0 2 −1 1 6
0 −1 2 4 10

 .

We then attempt to eliminate x2. The pivot in the position (2, 2) is zero (where (1, 1)
refers to the top-left entry), making division impossible. Swapping the second and third
rows, then proceeding with elimination as usual yields

1 −1 2 −1 −8
0 2 −1 1 6
0 0 −1 −1 −4
0 0 0 3 7

 .

One can then solve for x4, x3, x2, x1 in order via backward substitution.
However, note that there would be numerical issues with small pivots (see Example

2.4) — dividing by a very small number amplifies rounding errors, possibly destroying
accuracy.
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Example 2.4 (small pivot). Consider the system of equations

0.0003x1 + 59.147x2 = 59.15
5.291x1 − 6.130x2 = 46.78

This produces the exact solution x1 = 10 and x2 = 1. Without pivoting, computer
arithmetic produces a small but noticeable relative error. With partial pivoting (swapping
rows so the pivot is largest in magnitude), the numerical solution matches the exact result
to machine precision.
Example 2.5 (choosing the largest pivot). Suppose the coefficient matrix of a linear
system is

A =


0.0002 33.582 12.34 8.904
1.23 −9.87 0.3 1.83
0.12 3.4 1.63 1.34

 .

So, the candidates for the pivot in the first column are 0.0002, 1.23, and 0.12. The
largest magnitude is 1.23, so we need to swap R1 with R2. This process is repeated at
each elimination stage to improve stability.

In general, row swaps can be described using permutation matrices (a specific type
of elementary matrix) — if Pi,j is the identity matrix with rows i and j swapped, then

Pi,jA swaps rows i and j of A.

Partial pivoting at each step amounts to multiplying on the left by a sequence of
permutation matrices, which yields the equation

PA = LU,

where P denotes the product of all permutation matrices used. Solving Ax = b then
becomes PAx = Pb, so LUx = Pb. Since we permute the rows of A, we must do the
same for the rows of b, so we apply P to reorder b. The reordered right side becomes
Lb̃ = Pb, then we solve this via forward substitution. Lastly, we solve Ux = b̃ by
backward substitution. Not only does this avoid division by zero, but it also significantly
reduces numerical instability in Gaussian elimination.

2.6
Some Special Systems and the Cholesky Factorisation

Oftentimes, systems of linear equations encountered in practice have some special
structure. A common example is a banded system, where all the non-zero entries are
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near the diagonal. Take for example, the following tri-diagonal matrix:

−2 4 0 0 0 0 0 0
1 −1 −3 0 0 0 0 0
0 5 2 −7 0 0 0 0
0 0 −1 −8 −4 0 0 0
0 0 0 7 11 5 0 0
0 0 0 0 1 −1 −9 0
0 0 0 0 0 2 2 −2
0 0 0 0 0 0 13 −1


For the best efficiency, banded systems should be stored differently, but algorithms need
only minimal adjustment, and they are much faster to work with. Banded systems are a
special case of sparse systems, which have relatively few non-zero entries. For example,
consider the following matrix:

−2 0 0 0 0 0 0 4
1 0 −3 0 0 0 −1 0
0 5 2 0 0 0 −7 2
−8 0 −1 0 0 −4 0 0
0 0 0 7 11 5 0 0
0 −1 0 −9 1 0 0 0
0 0 2 0 0 0 2 −2
0 0 0 0 0 0 13 −1


Again, sparse systems need to be stored differently for efficiency. Algorithms for sparse
matrices need more adjustment, but large sparse matrices are common nowadays and
necessitate special techniques. We will not discuss them further but instead, our focus
is on two other special properties: symmetry and positivity.

Definition 2.3 (symmetric matrix). Let A ∈Mn×n (R). Then, A is symmetric if
and only if it is equal to its transpose. That is, AT = A.

Note that only square matrices can be symmetric, the identity matrix I and the
zero matrix 0 are symmetric, any diagonal matrix D is symmetric, and for any square
matrix A, the matrix B = A + AT is symmetric (easy to see because the transpose of
the transpose of a matrix yields the original matrix).

Symmetric matrices, and even operators, arise frequently in Applied Mathematics. For
example, the Laplacian operator† given by the divergence of the gradient of a scalar

†Will see in MA2104 Multivariable Calculus, MA4221 Partial Differential Equations, etc.
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function f : Rn → R on a Euclidean space Rn is defined to be

∆f = ∂2f

∂x1
+ . . . + ∂2f

∂xn
=

n∑
i=1

∂2f

∂xi
. (2.7)

We say that the expression in (2.7) is symmetric. Also in Multivariable Calculus†, of
interest is the Hessian matrix, defined by

∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
. . . ∂2f

∂x2∂xn

...
... . . . ...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂x2

n

 . (2.8)

The Hessian matrix arises in multivariable optimisation problems. Again, suppose f :
Rn → R. One can compute the gradient vector

∇f =
〈

∂f

∂x1
, . . . ,

∂f

∂xn

〉
and solve the equation∇f = 0. Thereafter, compute the Hessian matrix (2.8) and classify
whether the extreme point is a maximum, minimum, or a saddle (of course, just like the
second derivative test for the single-variable case, we have a case which is inconclusive).

We have discussed the concept of a matrix being symmetric. Next, what does it mean
for a square matrix to be positive? To be precise, the term used is positive definite
(Definition 2.4).

Definition 2.4 (positive definite matrix). Let A ∈Mn×n (R). Then, A is said to be
positive definite if and only if

xTAx > 0 for all x ̸= 0.

As expected, a square matrix A is said to be negative definite if and only if −A
is positive definite. Note that positive and negative definite matrices are necessarily
invertible. Next, if we have xTAx ≥ 0 (in contrast to > 0 in Definition 2.4), then we
say that A is a positive semi-definite matrix. Note that matrices can be non-zero and
neither positive nor negative definite.
Example 2.6. Throughout, let x = (x, y). Then,

A =
(

1 1
−1 1

)
is positive definite.

†Also appears in MA3210 Mathematical Analysis II.
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To see why, xTAx = x2 + y2, which is > 0 because x and y cannot both be zero, and
the square of any non-zero real number is > 0.

Next, let

B =
(
−3 1
1 −3

)
.

One can prove that xTBx < 0, which implies that B is negative definite.

Lastly, let

C =
(

2 1
0 −1

)
.

As such, xTCx = 2x2 + xy − y2 which can take on positive and negative values. For
example, let f (x, y) = 2x2 + xy − y2. Then, f (1, 1) = 2 and f (1,−2) = −4, so C is
neither a positive nor definite matrix.

Of interest are matrices that are both positive definite and symmetric, and sometimes,
this is included in the definition.
Example 2.7. Let D ∈Mn×n (R) be a diagonal matrix with diagonal entries d1, . . . , dn.
Then, one sees that

xTDx = d1x2
1 + . . . + dnx2

n.

Note that D is positive definite if and only if di > 0 for all 1 ≤ i ≤ n. Also, clearly D is
a symmetric matrix.
Example 2.8. Consider the upper triangular matrix

U =


1 −2 −2
0 2 4
0 0 3


and let v = (x, y, z). Then, one can deduce that

vTUv = x2 + 2y2 + 3z2 − 2xy − 2xz + 4yz. (2.9)

We wish to prove that U is positive definite so it suffices to show that vTUv can be
written as the sum of squares. By considering −2xy, we need to compensate with x2 + y2

so that x2 − 2xy + y2 = (x− y)2 which is a perfect square. The same can be argued for
the other two coloured expressions. However, we would run into a problem because x2

cannot be nicely distributed into the completed square form of (x− y)2 and (x− z)2.

Another way to look at the expression in (2.9) is to focus on x2 − 2xy − 2xz. We can
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write
x2 − 2xy − 2xz = x2 − 2x (y + z) .

We realise that the missing term required to complete the square is (y + z)2 so

x2 − 2xy − 2xz = (x− (y + z))2 − (y + z)2 .

Hence, (2.9) becomes

(x− (y + z))2 − (y + z)2 + 2y2 + 3z2 + 4yz = (x− y − z)2 + y2 + 2z2 + 2yz

so again by completing the square, it becomes (x− y − z)2 + (y + z)2 + z2 > 0, which is
the sum of three squares.

In general, it is tedious to check whether a matrix is positive definite by Definition
2.4. However, we can make use of the following fact in Proposition 2.2:

Proposition 2.2. Let A ∈Mn×n (R). Then,

A is positive definite if and only if A + AT is positive definite.

This leads to much easier tests.

Proposition 2.3. Let A ∈Mn×n (R) be a symmetric matrix. Then, A is positive
definite if and only if the determinants of all its leading principal submatrices Ak

are positive.

Example 2.9. Given

A =


1 2 1
2 1 2
1 2 3

 ,

its principal submatrices are

A1 =
(
1
)

A2 =
(

1 2
2 1

)
A3 =


1 2 1
2 1 2
1 2 3

 = A.

Note that det (A1) = 1 but det (A2) = −3 so by Proposition 2.3, A is not positive
definite.

Proposition 2.4. Let A ∈Mn×n (R) be a symmetric matrix. Then, A is positive
definite if and only if its eigenvalues are all positive.
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Finally, any matrix of the form B = ATA is positive semi-definite. If A ∈Mm×n (R)
with m ≥ n and is of full rank, then B is positive definite. While this may seem like a
special case, it is relatively common. For example, the covariance matrix in Statistics
is of this form. Symmetric positive definite matrices arise in for instance linear least
squares problems (see Chapter 3). If A is a symmetric positive definite matrix, then we
can factor A = LLT rather than A = LU. Due to symmetry, we only need to store and
work with half the matrix, and pivoting is not required for stability.

For the n = 2 case, say

A =
(

a11 a12

a21 a22

)
=
(

ℓ11 0
ℓ21 ℓ22

)(
ℓ11 ℓ21

0 ℓ22

)
.

For the n = 3 case, say

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 =


ℓ11 0 0
ℓ21 ℓ22 0
ℓ31 ℓ32 ℓ33




ℓ11 ℓ21 ℓ31

0 ℓ22 ℓ32

0 0 ℓ33

 .

Note that in each case, A is a symmetric positive definite matrix. We leave it as a fun
exercise to the reader to solve for each of the ℓij ’s, which merely requires some simple
algebraic manipulation. This procedure is known as the Cholesky algorithm, and the
factorisation A = LLT is called the Cholesky factorisation.
Example 2.10. Let

A =


4 −2 2
−2 2 2
2 −4 11

 .

Clearly, A is symmetric. One can use Definition 2.4 or Proposition 2.3 to prove that A
is positive definite. We know find the Cholesky factorisation of A. Suppose

A =


ℓ11 0 0
ℓ21 ℓ22 0
ℓ31 ℓ32 ℓ33




ℓ11 ℓ21 ℓ31

0 ℓ22 ℓ32

0 0 ℓ33

 =


ℓ2

11 ℓ11ℓ21 ℓ11ℓ31

ℓ11ℓ21 ℓ2
21 + ℓ2

22 ℓ21ℓ31 + ℓ22ℓ32

ℓ11ℓ31 ℓ21ℓ31 + ℓ22ℓ32 ℓ2
31 + ℓ2

32 + ℓ2
33

 .

Comparing the (1, 1)-entry, we see that ℓ2
11 = 4. By default, we take the positive square

root, so ℓ11 = 2. Next, by considering the (1, 2)-entry, we have 2ℓ21 = −2, so ℓ21 = −1.
One can slowly deduce the other entries (I do not wish to bore the reader with such
calculations), thus obtaining the Cholesky factorisation of A being

A =


2 0 0
−1 1 0
1 −3 1




2 −1 1
0 1 3
0 0 1

 .
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It appears that Cholesky factorisation is faster than Gaussian elimination. One can
work out that the total number of operations required for the Cholesky factorisation
is 1

6
(
n3 − n

)
. The computational complexity of LU factorisation is O

(
2
3n3

)
, whereas

Cholesky factorisation yields O
(

1
3n3

)
. So indeed, Cholesky factorisation is twice as fast

as Gaussian elimination.
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Chapter 3
Linear Least Squares

3.1
Least Squares Problems

Here, we are interested in systems of linear equations Ax = b that have no solution.
Observe the following equivalent statements:

Ax = b⇔ Ax− b = 0⇔ ∥Ax− b∥2 = 0

So, we can minimise the norm instead. Recall from MA2001 that the method of least
squares appears in problems involving linear regression, where we consider the matrix
equation

Xβ = y or explicitly


1 x1
...

...
1 xn


(

β0

β1

)
=


y1
...

yn

 .

This is an example of an overdetermined system of equations. We will focus on the linear
regression setting, but note that the methods we discuss apply to general overdetermined
systems.

Consider the case when A is the concatenation of two column vectors a1 and a2.
The existence of a solution to Ax = b implies that b ∈ span {a1, a2}. This span is two-
dimensional so we can visualise it as a plane. On the other hand, if a solution to the linear
system does not exist, then b ̸∈ span {a1, a2}. We can instead try to find the vector y
in the span that is the closest to b.

Note that Ax = b does not have a solution, but Ax = y does, and we denote this
solution by x̂. Define b = y + e, where yTe = 0 (this is just the number 0, where we
recall that the dot product of two vectors can be represented using transpose). In fact,
aT

1 e = aT
2 e = 0. Equivalently, ATe = 0. Then, one can prove that

ATAx̂ = ATb.

These are known as the normal equations. If A is full rank and overdetermined, then
ATA is positive definite. The Cholesky algorithm (recall from Chapter 2.6) can be used
to solve the normal equations. Moreover, ATA will be invertible, so the solutions can
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be expressed as
x̂ =

(
ATA

)−1
ATb.

The matrix
(
ATA

)−1
AT is called the pseudoinverse of A and it is denoted by A+. If

A is not overdetermined and is of full rank, we have A+A = I, but AA+ ̸= I.

As mentioned earlier, least squares problems are commonly encountered when fitting
a linear model to data. Suppose we have n observations of two variables x = (x1, . . . , xn)
and y = (y1, . . . , yn), and we think that there is a linear relationship between the two.
So, we construct the following system of linear equations:

yi = β1xi + β0 where 1 ≤ i ≤ n

In fact, these relationships usually do not hold exactly, and we define the errors to be
εi = yi − β1xi + β0. We can express these relationships in terms of vectors — or rather,
a compact-looking system of linear equations as follows:

y1
...

yn

 =


x1 1
...

...
xn 1


(

β1

β0

)
+


ε1
...

εn


As such, we have the problem y = Xβ + ε. On the other hand, if we have many
independent variables, we still have a similar looking system of linear equations, just
that β0, β1 extend to β0, β1, β2, . . . , βk and the matrix X has more columns.

We have the system Ax = b which has no solution. Instead, we seek to minimise
∥Ax− b∥22. Recall that ∥x∥22 = xTx so by some algebraic manipulation, one can deduce
that

∥Ax− b∥22 = xTATAx− 2xTATb + bTb.

We say that this is a multivariable quadratic polynomial. In fact, any multivariable
quadratic polynomial can be written as

xTQx− 2xTr + s,

where Q is symmetric and positive definite. By comparison, we see that Q = ATA,
r = ATb, and s = bTb.
Example 3.1. Let

p (u, v) = u2 + 3uv − v2 + u + v − 2.
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Also, let x = (u, v). Then we see that

Q =
(

1 3
2

3
2 −1

)
r = −1

2

(
1
1

)
s = −2.

We have p (x) = xTQx− 2xTr + s. So, the problem of minimising the norm is the same
as the problem of minimising a quadratic polynomial.

3.2
QR Factorisation

For A ∈Mm×n (R) with m ≥ n, a QR factorisation is

A = QR,

where Q ∈Mm×n (R) has orthonormal columns and R ∈Mn×n (R) is upper triangular.
Note that a square matrix Q with real entries is said to be orthogonal if QTQ = I. From
here,

∥Qv∥22 = (Qv)T (Qv) = vTQTQv = vTv = ∥v∥22
so orthogonal matrices preserve norms. Also, note that if Q is orthogonal, then so is QT.
We illustrate the process for QR factorisation using the Gram-Schmidt process. Let

A =
(
a1 . . . an

)
be of full column rank.

Then, define r11 = ∥a1∥2 and q1 = a1
∥r11∥ . For 2 ≤ j ≤ n, define

rij = qT
i aj for all 1 ≤ i ≤ j − 1,

and

uj = aj −
j−1∑
i=1

rijqi rjj = ∥uj∥2 qj = uj

rjj
.

Then, Q has orthonormal columns, R is upper triangular, and A = QR. Equivalently,
R = QTA with rij = qT

i aj for i ≤ j.

3.3
The Householder Reflection

While the Gram-Schmidt process is the typical algorithm introduced in a Linear
Algebra class (like MA2001), several other algorithms are commonly used for solving
least squares problems. For example, we can perform QR factorisation via Householder
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reflections or Givens rotations, or use singular value decomposition (SVD).

The Householder method is the standard implementation for the QR factorisation in
most systems. Givens rotations are used for computing the QR factorisation when
the matrix has special structure. They are also used in combination with Householder
reflections to solve eigenvalue problems. Singular value decomposition on the other hand
is the most stable but also the slowest method.

Recall that orthogonal matrices preserve the Euclidean 2-norm. We are interested in
transformations in R2 that preserve the Euclidean length of vectors. They are namely
reflections and rotations. Note that the Gram-Schmidt process proceeds via projections,
which generally do not preserve norms.

To project a onto the span of b, we compute

a · b
∥b∥

b
∥b∥ = bbT

bTba.

In general, to project a onto the range space of a linear transformation with matrix
representation M, we compute M

(
MTM

)−1
MT. To see why, note that the columns of

M span the range space. So, for any v ∈ R (M), there exists u such that Mu = v. One
can then show that M

(
MTM

)−1
MTv = v. Moreover, if w is orthogonal to the range

space of M, then it is contained in the null space of MT, and hence also in the null space
of M

(
MTM

)−1
MT.

Let P be a projection matrix. It is known that P is idempotent. That is, P2 = P. Also,
I−P projects onto the complementary subspace. A simple example of a projection in
R2 is the projection onto the x-axis, which is given by

Px-axis =
(

1 0
0 0

)
. (3.1)

For example, applying Px-axis to the vector (4, 3) results in (4, 0). As such, we have
moved the vector to the x-axis, but we have changed its length. We now motivate the
Householder reflection. How can we move the vector (4, 3) to the x-axis without changing
its length? One way to accomplish this is to reflect the vector through the line that bisects
the angle it makes with the axis. To defien the line, we need to find a vector perpendicular
to it. If we choose the length of v carefully, then subtracting v from our original vector
x will be the same as projecting onto the line, and subtracting v again will accomplish
the reflection. We omit the full geometrical details though.
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For a non-zero vector v, the projection onto the span of v is

vvT

vTv and onto the complement is I− vvT

vTv .

Define

H = I− 2vvT

vTv . (3.2)

Note that H is symmetric and orthogonal. We call H the Householder matrix.

Now, we use this idea to form the QR factorisation of a matrix. We first find a
Householder matrix H1 with the property that H1a1 = α1e1, where e1 denotes the first
standard basis vector. So, we obtain

H1A =


∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗

 .

Then, we want to zero out the entries below the diagonal in column 2, but we must
not mess up the zeros we already created in column 1. As such, we con consider the
Householder matrix

H2 =
(

1 0
0 S2

)
,

where the top-left 1 means the first row/column is unaffected, and S2 is a smaller
Householder matrix acting only on rows 2 through m. We choose S2 so that it transforms
the subcolumn 

∗
∗
∗

 into


∗
0
0

 .

After applying H2, the first two columns are in the desired form. We keep constructing
Householder matrices H3, H4, . . ., each time acting on a smaller trailing submatrix, until
we obtain

an upper triangular matrix R = Hk . . . H2H1A.

Since each Householder matrix Hi is orthogonal, then the product Q = H1 . . . Hk is
also orthogonal, and we have A = QR. It is easier to illustrate how we can apply the
Householder transformation to QR factorisation with an example, so consider Example
3.2.
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Example 3.2 (Householder transformation). Let

A =


1 −4
2 3
2 2

 .

We wish to find an orthogonal matrix Q and an upper triangular matrix R such that
A = QR. Note that ∥a1∥, so to preserve norms, we need to reflect a1 onto (3, 0, 0). Set
v1 = (3, 0, 0)− (1, 2, 2) = (2,−2,−2). By the definition of the Householder matrix (3.2),
we have

H1 =


1
3

2
3

2
3

2
3

1
3 −2

3
2
3 −2

3
1
3

 .

One can compute

H1A =


3 2
0 −3
0 −4

 .

We then consider the column below the teal entry 2, which is the vector (−3,−4). It has
norm 5, so we set v2 = (5, 0)− (−3,−4) = (8, 4). By (3.2) again, we can compute

H2 =


1 0 0
0 −3

5 −4
5

0 −4
5

3
5

 .

Then, we have

H2H1A =


3 2
0 5
0 0

 = R.

Indeed, R is an upper triangular matrix. One can compute

Q = H1H2 =


1
3 −14

15 − 2
15

2
3

1
3 −2

3
2
3

2
15

11
15

 which is orthogonal.

3.4
The Givens Rotation

Recall the projection matrix which we mentioned in (3.1). We said that we could
project the vector (4, 3) but in order to preserve its length, we had to invoke what is
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known as the Householder transform. Another way to move the vector (4, 3) onto the
x-axis is by rotating it. Recall from MA2001 that in R2, a clockwise rotation† by θ about
the origin O is given by

R (θ) =
(

cos θ sin θ

− sin θ cos θ

)
.

Note that R (θ) is an orthogonal matrix. The proof is rather trivial and it involves the
classic Pythagorean identity sin2 θ + cos2 θ = 1.

We can extend rotations in R2 to rotations in R3. In particular, we shall consider
clockwise rotations about the x, y, z-axes as follows:

Rx (θ) =


1 0 0
0 cos θ sin θ

0 − sin θ cos θ



Ry (θ) =


cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ



Rz (θ) =


cos θ sin θ 0
− sin θ cos θ 0

0 0 1


Note that every rotation in R3 can be clearly written as a composition of the standard
rotations Rx, Ry, Rz. Now, returning to the 2-dimensional case, note that applying a
rotation to the vector (x1, x2) leads to the matrix equation(

cos θ sin θ

− sin θ cos θ

)(
x1

x2

)
=
(

y

0

)
. (3.3)

The rotation preserves lengths, i.e. y2 = x2
1 + x2

2, and (3.3) can also be written as(
x1 x2

x2 −x1

)(
cos θ

sin θ

)
=
(

y

0

)
.

Considering the inverse of the coefficient matrix, one can deduce that

sin θ = x2√
x2

1 + x2
2

and cos θ = x1√
x2

1 + x2
2

.

†Recall the matrix representation for an anticlockwise rotation by θ, then use the fact that sin θ is an
odd function but cos θ is an even function.
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Say we wish to rotate (4, 3) onto the x-axis, so we have sin θ = 3
5 and cos θ = 4

5 . So, (4, 3)
is mapped to the vector (5, 0), thus preserving lengths.

We can extend the idea of rotation to higher dimensions as follows. We wish to use
one component of a vector to zero out another component. For example, consider the
following rotation in R5:

R (θ) =



1 0 0 0 0
0 cos θ 0 sin θ 0
0 0 1 0 0
0 − sin θ 0 cos θ 0
0 0 0 0 1





x1

x2

x3

x4

x5


=



x1

α

x3

0
x5


(3.4)

Then,
cos θ = x2√

x2
2 + x2

4

and sin θ = x4√
x2

2 + x2
4

.

Similar to the 2-dimensional case, we can rotate any arbitrary vector in R5, say
(5, 3,−2, 4, 1), which gets mapped to (5, 5,−2, 0, 1) (of course, one needs to substitute
the values of sin θ and cos θ in the rotation matrix in (3.4)).

Now, we use this idea to form the QR factorisation of a matrix. If A is an m× n

matrix with m ≥ n, we can apply a sequence of what are called Givens rotations (one
can think of this as a generalisation of rotation matrices) to transform A into an upper
triangular matrix. Note that we need one Givens rotation for each entry to be zeroed
out. In the first column, we use the first entry to zero out the remaining m− 1 entries,
and in the second column, we use the second entry to zero out the remaining m− 2
entries, and so on. Thus, we obtain

Gk . . . G2G1A = R or equivalently A = GT
1 . . . GT

k R = QR.

Example 3.3 (Givens rotation). Let

A =


1 −4
2 3
2 2

 .

Recall that
cos θ = x1√

x2
1 + x2

2

and sin θ = x2√
x2

1 + x2
2

.
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We zero out the 3 entries below the diagonal one at a time. By some trial and error, we
construct the Givens rotation

G1 =


1√
5

2√
5 0

− 2√
5

1√
5 0

0 0 1

 so G1A =


√

5 2√
5

0 11√
5

2 2

 .

Thereafter, consider the Givens rotation

G2 =


√

5
3 0 2

3
0 1 0
−2

3 0
√

5
3

 so G2G1A =


3 2
0 11√

5
0 2√

5

 .

Lastly (and as expected), we consider the Givens rotation

G3 =


1 0 0
0 11

5
√

5
2

5
√

5
0 − 2

5
√

5
11

5
√

5

 so G3G2G1 =


3 2
0 5
0 0


which is an upper triangular matrix.

There is another method that is slower than the QR factorisation, but more stable,
and it also works even when A is not full rank. This method is known as singular value
decomposition (SVD), which we will discuss in Chapter 4.2.
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Chapter 4
Eigenvalue Problems

4.1
Recap on Eigenvalues and Eigenvectors

Definition 4.1 (eigenvalue and eigenvector). Let A ∈Mn×n (R). We say that
x ∈ Rn \ {0} is an eigenvector of A corresponding to an eigenvalue λ ∈ C if the
equation Ax = λx is satisfied.

From here, one defines the characteristic polynomial of a matrix A, which is
pA (λ) = det (A− λI). Note that every root of pA = 0 is an eigenvalue of A, and every
eigenvalue of A is a root of pA = 0. From MA2001, recall that for any diagonal matrix D,
its diagonal entries are its eigenvalues and the associated eigenvectors are the standard
basis vectors; for any upper triangular matrix U, the diagonal entries are also its
eigenvalues, but the associated eigenvectors are not as obvious as in the diagonal case.

Recall the fundamental theorem of algebra, which states that every polynomial with
complex coefficients has a root over the complex numbers. As a consequence, we can
factor polynomials over the complex numbers as follows:

p (z) = cnzn + . . . + c1z + z0 = cn (z − λ1) . . . (z − λn)

where λ1, . . . , λn are the eigenvalues of the matrix A (and recall that p denotes its
corresponding characteristic polynomial).

Definition 4.2 (multiplicity). Let pA (λ) denote the characteristic polynomial of
A. The algebraic multiplicity is the multiplicity of a root of p, and the geometric
multiplicity is the dimension of the eigenspace null (A− λI).

Note that the geometric multiplicity of an eigenvalue is always ≤ its algebraic
multiplicity. If the geometric multiplicity is strictly less than the algebraic multiplicity,
we say that the matrix is defective. Note that non-defective matrices are diagonalisable.
That is to say,

AP = PD or equivalently A = PDP−1.
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Here, P is an invertible matrix whose columns are the eigenvectors of A. We say that
A is diagonalisable if and only if it has n linearly independent eigenvectors (another
condition for a matrix A to be diagonalisable is that it has n distinct eigenvalues).

If an n× n matrix A has n orthogonal eigenvectors, then we say that it is orthogonally
diagonalisable. Equivalently, there exists an orthonormal basis of Rn consisting of
eigenvectors of A.

Theorem 4.1 (real spectral theorem). Let A ∈Mn×n (R). Then, A is orthogonally
diagonalisable if and only if A = AT.

Theorem 4.2 (complex spectral theorem). Let A ∈Mn×n (C). Then, A is orthog-
onally diagonalisable if and only if it is a normal matrix. That is, AA∗ = A∗A,
where A∗ denotes the conjugate transpose of A.

4.2
Singular Value Decomposition

We now introduce the concept of singular value decomposition. For A ∈Mm×n (R),
we wish to write

A = UΣVT,

where U ∈Mm×m (R) and V ∈Mn×n (R) are orthogonal, and Σ ∈Mm×n (R) is
diagonal. The matrices AAT and ATA are real symmetric and hence orthogonally
diagonalisable by the real spectral theorem (Theorem 4.1). Moreover, they are positive
semi-definite so their eigenvalues are non-negative. In fact, AAT and ATA share the
same non-zero eigenvalues.

The matrices U and V come from the respective spectral decompositions

AAT = UD1UT and ATA = VD2VT

The columns of U are the eigenvectors of AAT and the columns of V are the eigenvectors
of ATA. The diagonal entries of Σ are called the singular values of A, and they are the
square roots of the eigenvalues of ATA or AAT.
Example 4.1. We find the singular value decomposition of

A =
(

1 1 0
0 1 1

)
.
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Note that

AAT =
(

2 1
1 2

)
and ATA =


1 1 0
1 2 1
0 1 1

 .

The eigenvalues of AAT are 3 and 1 with corresponding eigenvectors (1, 1) and (1,−1);
the eigenvalues of ATA are 3, 1, and 0, and the corresponding orthogonal eigenvectors
are (1, 2, 1), (1, 0,−1), (1,−1, 1). As such,

Σ =
(√

3 0 0
0 1 0

)
U =

 1√
2

1√
2

1√
2 − 1√

2

 V =


1√
6

1√
2

1√
3

2√
6 0 − 1√

3
1√
6 − 1√

2
1√
3

 .

One important application of singular value decomposition is to solve least squares
problems. Let A ∈Mm×n (R) with m > n and consider

Ax = b or equivalently UΣVTx = b.

One can show that
∥Ax− b∥22 =

∥∥∥ΣVTx−UTb
∥∥∥2

2
.

Set y = VTx and z = UTb so that we get∥∥∥ΣVTx−UTb
∥∥∥2

2
= ∥Σy− z∥22 =

m∑
i=1

(σiyi − zi)2 .

Only the first n components of Σy are non-zero, so
m∑

i=1
(σiyi − zi)2 =

n∑
i=1

(σiyi − zi)2 +
m∑

i=n+1
z2

i .

We have no control over the second sum, but we can choose yi so that σiyi = zi. Using
the definition of y and z, this is equivalent to choosing x = VΣ+UTb. Recall that for
an m× n diagonal matrix Σ, we define Σ+ by taking the reciprocals of the non-zero
elements.

For a general A with A = UΣVT, we take A+ = VΣ+UT. Given a system of linear
equations Ax = b, we have the following properties:

(i) x = A+b is a solution if any exist
(ii) If there are infinitely many solutions, then x = A+B has minimal norm among

them all
(iii) x = A+b is the least squares approximation if no solution exists
(iv) If the least squares approximation is not unique, then x = A+b is the least-norm

least squares approximation
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4.3
Root Finding Algorithms

We now return to our goal of computing the eigenvalues and eigenvectors of a
square matrix. Using the methods learnt in Linear Algebra, we might try to proceed by
forming the characteristic polynomial pA (λ) = det (A− λI) and computing its roots.
For polynomals of degree 4 or smaller, the orots can be found directly via the quadratic,
cubic, or quartic formula (the latter two are quite complicated though). For polynomials
of degree 5 and higher, a brilliant Norwegian Mathematician by the name of Niels Henrik
Abel proved that it is impossible to derive a similar formula. This result is known as
the Abel-Ruffini theorem, and he gave a proof of it in 1823 — he was only 21 years
old. In practice, we use iterative methods to find roots. In fact, polynomial root finding
is a special case of the more general problem of solving non-linear equations, including
systems of non-linear equations.

Some examples of non-linear equations pop up in Physics — for example, in the ideal
gas law and Newton’s law of gravitation. The ideal gas law states that

pV = nRT,

where p denotes the pressure (Pa), V denotes the volume (m3), n denotes the amount
of substance (mol), R denotes the universal gas constant, and T denotes the absolute
temperature (K). Mathematically, we can express the law as the zero set of a smooth
map. That is,

F : R4
>0 → R where F (p, V, n, T ) = pV − nRT.

As such, the law corresponds to finding the pre-image of the singleton set {0} (formally,
we call this the fibre), i.e.

F −1 ({0}) = {(p, V, n, T ) : pV − nRT = 0} .

In general, we see that such problems involve considering f : Rn → Rm where f (x) = 0.
For example, if we wish to solve the equation x2 = 4 sin x, we can set f (x) = x2 − 4 sin x

and solve f (x) = 0.

The existence of solutions to non-linear equations is much more difficult to characterise
as compared to linear equations. Having said that, some possible conditions for
existence include the intermediate value theorem, the inverse function theorem, and
the contraction mapping theorem. Even when solutions exist, the typical behaviour of
non-linear equations is non-uniqueness. For example, polynomials can have multiple or
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isolated roots. Consider the equation f (x) = x2 − 2x + 1 = 0, which has a repeated root
at x = 1 of multiplicity 2. When we compute f ′ (x) 2 = (x− 1), we see that the root of
f (x) = 0, x = 1, is also a root of the derivative.

Our first method for solving non-linear equations, known as the bisection method, relies
on the intermediate value theorem. The method returns an interval rather than a number,
but this makes sense when working on a computer because solutions to f (x) = 0 may
not exist in finite-precision arithmetic even when they exist in R. Recall that one version
of the intermediate value theorem states that if f : [a, b]→ R is a continuous function
and changes sign on the interval [a, b], then it must have a root in that interval. We start
with an initial interval [a0, b0], where the polarities of f (a0) and f (b0) are different. We
then evaluate f at the midpoint m0, where m0 = a0+b0

2 . We again check the signs — if
f (a0) and f (m0) have different signs, then [a0, m0] becomes our new interval, and we
choose [m0, b0] otherwise. We continue this process of narrowing the interval.

One alternative to the bisection method is fixed-point iteration. We define x to be a fixed
point of a function g if g (x) = x. Some problems f (x) = 0 can be recast as g (x) = x.
For example, if

f (x) = x2 − x− 2 = 0,

then we can set x2 − 2 = x, so we can take g (x) = x2 − 2. Alternatively, we can set
x2 = x + 2 so x = 1 + 2

x , which implies we can take g (x) = 1 + 2
x . From here, we observe

that a given problem may have many different interpretations as a fixed point problem.

For the fixed-point iteration approach, we first choose some initialisation x0, then let
xk+1g (xk). Define the error at step k to be

ek+1 = xk+1 − x = g (xk)− g (x) .

By the mean value theorem, there exists θk between xk and x such that

g (xk)− g (x) = g′ (θk) (xk − x)

so the error is ek+1 = g′ (θk) ek. If |g′ (x)| < 1, then we have convergence. Note that if
g′ (x) = 0, then by Taylor’s theorem, we have

g (xk)− g (x) = g′′ (ζk) · (xk − x)2

2 where ζk is between xk and x.

This would lead to more rapid convergence.
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There is a more advanced version of fixed-point iteration known as Newton’s method.
This method can also be extended to functions of several variables. The intuition behind
Newton’s method is as follows. For a fixed x, we can approximate f using a linear
function of h via

f (x + h) ≈ f (x) + f ′ (x) h.

We are looking for the roots of this function, so

h = − f (x)
f ′ (x) .

Our procedure is to make an initial guess x0, compute h, set x1 = x0 − h and repeat.
Newton’s method is a special type of fixed-point iteration with g (x) = x− h. So, g (x) =
x if and only if f (x) = 0 with the assumption that f ′ (x) ̸= 0. Note that this method
requires us to compute derivatives. For Newton’s method, we have

g (x) = x− f (x)
f ′ (x) so g′ (x) = f (x) f ′′ (x)

[f ′ (x)]2
.

If a is a simple root, then f (a) = 0 and f ′ (a) ̸= 0 so g′ (a) = 0. By Taylor’s theorem,
this implies that convergence to simple roots should be quadratic.

The three methods we discussed, namely bisection, fixed-point iteration, and the Newton-
Raphson method, allow us to only find one root of a function. What if we want to find
all the zeros of a polynomial? We could use one of the methods from before to find a
root a, then consider the function p(x)

x−a and repeat the process. Alternatively, and what
is actually done in practice, is that we form the companion matrix (Definition 4.3) and
solve the associated eigenvalue problem. For example, let p (x) = x3 − 6x2 + 11x− 6.
Then, the associated companion matrix is

C =


0 0 6
1 0 −11
0 1 6

 .

The eigenvalues of C are 2, 3, and 1, which are the roots of the polynomial equation
p (x) = 0. This is used in practice because instead of finding roots one-by-one and
performing polynomial division repeatedly (which can accumulate numerical errors),
constructing the associated companion matrix allows one to use robust eigenvalue
algorithms to find all roots simultaneously, even for higher degree polynomials. We give
a definition for the companion matrix of a polynomial (Definition 4.3).
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Definition 4.3 (companion matrix). Let

p (x) = xn + cn−1xn−1 + . . . + c1x + c0

be a monic polynomial of degree n over R. The companion matrix associated with
p (x) is

C =



0 0 0 . . . 0 −c0

1 0 0 . . . 0 −c1

0 1 0 . . . 0 −c2

0 0 1 . . . 0 −c3
...

...
... . . . ...

...
0 0 0 . . . 1 −cn−1


.

The eigenvalues of C are the roots of p (x) = 0.

4.4
Power Iteration

Our first eigenvalue algorithm is used to compute the largest in magntiude eigenvalue
of a square matrix. Despite its limitations and simplicity, this algorithm is used in
practice in important applications, such as Google’s PageRank algorithm.

We first introduce a way to compute an eigenvalue if we already know an eigenvector. Let
x be an n× 1 matrix and consider the overdetermined system λx = Ax. Pre-multiplying
both sides by xT, we can deduce that

λ = xTAx
xTx . (4.1)

The fraction in (4.1) is called a Rayleigh quotient. Alternatively, we can write
⟨Ax, x⟩
⟨x, x⟩ = λ.

The power iteration algorithm proceeds by applying our matrix to a random initial vector
repeatedly. That is to say, we choose an initial vector v0, and recursively compute vk =
Avk−1 for k = 1, 2, . . .. Suppose A is a non-defective matrix (meaning to say assuming
A ∈Mn×n (R), then A has n linearly independent eigenvectors) with eigenvalues

|λ1| > |λ2| ≥ . . . ≥ |λn| .

Then, there exists a basis of eigenvectors x1, . . . , xn, even though we do not know what
these vectors are. So for v0 ∈ Rn, we note that v0 = c1x1 + . . . + cnxn for some real
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coefficients c1, . . . , cn. Then,

Av0 = c1λ1x1 + . . . + cnλnxn.

Continuing to apply A, we obtain

Akv0 =
n∑

i=1
ciλ

k
i xi = λk

1

(
c1x1 +

n∑
i=1

ci

(
λi

λ1

)k

xi

)
.

That is, under our current setup, we have vk 7→ c1λk
1x1, and we can recover the eigenvalue

using the Rayleigh quotient. An even better approach is to take

wk = Avk−1 and vk = wk

∥wk∥∞
.

This keeps the components of our vectors to a reasonable magnitude.
Example 4.2 (power iteration). Let

A =


2 1 1
0 3 1
0 0 5

 .

Choose v0 = (1, 1, 1). Then, one can compute the following:

Av0 = (4, 4, 5)
A2v0 = (17, 17, 25)
A3v0 = (76, 76, 125)
A4v0 = (353, 353, 625)
A5v0 = (1684, 1684, 3125)

Using the method where we divide by the maximum entry at each step, we eventually
obtain A10v0 = (0.503, 0.503, 1) which eventually stabilises.

The power iteration algorithm can be adapted in various ways to find other
eigenvalues and eigenvectors. For example, if λ is an eigenvalue of A, then 1

λ is an
eigenvalue of A−1. Thus, applying power iteration to A−1 will produce the eigenvector
corresponding to the smallest (in magnitude) eigenvalue of A. Similarly, for some scalar
σ, the smallest (in magnitude) eigenvalue of A− σI is λ− σ, where λ is the closest
eigenvalue to σ. These two observations are combined to form the inverse iteration
algorithm, defined as follows:

vk+1 = (A− σI)−1 vk
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Rather than explicitly computing the inverse of A− σI, we compute the LU factorisation
and solve

(A− σI) vk+1 = vk at each step.

At the end, we once again make use of the Rayleigh quotient to compute the eigenvalue.
Note that the closer σ is to an eigenvalue of A, the faster inverse iteration will converge.
We can update the shift σ at each stage to speed up convergence. We do this by combining
inverse iteration with Rayleigh quotients in an algorithm known as the Rayleigh quotient
iteration.

Theorem 4.3 (Rayleigh quotient iteration). Suppose we are given A ∈Mn×n (R).
For k = 0, 1, 2, . . ., we first normalise vk to obtain

vk 7→
vk

∥vk∥∞
.

The Rayleigh quotient is defined to be

σk+1 = vT
k Avk

vT
k vk

.

We then solve the shifted system

(A− σkI) wk+1 = vk and take vk+1 = wk

∥wk∥∞
.

Example 4.3. Consider the matrix

A =


2 1 1
0 3 1
0 0 5

 .

Choose σ = −1 and v0 at random. Then,

A− σI =


3 1 1
0 4 1
0 0 6

 so (A− σI)−1 =


0.33333 −0.08333 −0.04167
0.00000 0.25000 −0.04167
0.00000 0.00000 0.16667

 .

Let B = (A− σI)−1. Note that because A is upper triangular, its eigenvalues are its
diagonal entries 2, 3, and 5, and because σ = −1 is closest to 2, our recursive algorithm
should converge to the λ = 2 eigenvector. Choose v0 = (1, 0.9, 1) and normalise it by
∥·∥∞. So,

w1 = Bv0 =


0.21766
0.21333
0.16666

 so v1 = w1
∥w1∥∞

=


1

0.84615
0.76923

 .
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Let
σ1 = vT

1 Av1
vT

1 v1
= 4.0615.

Repeat this process to compute values of σk for k = 2, 3, 4, . . .. For example, σ2 = 3.7226,
σ3 = 3.3827, σ4 = 3.0840. One can deduce that the Rayleigh quotient σk tends towards
2, as expected.

4.5
QR Iteration

In practice, many techniques are used to speed up the convergence of this algorithm.
One important technique is to first convert the matrix to a special form. A matrix is
called upper Hessenberg if all of its entries below the first subdiagonal are 0. That is,

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

0 a32 a33 a34 a35

0 0 a43 a44 a45

0 0 0 a54 a55


.

So, an upper Hessenberg matrix is almost upper-triangular. A symmetric upper
Hessenberg matrix is tridiagonal. That is, of the form

a11 a12 0 0 0
a21 a22 a23 0 0
0 a32 a33 a34 0
0 0 a43 a44 a45

0 0 0 a54 a55


.

We need a way to transform a matrix to upper Hessenberg form that preserves its
eigenvalues. This can be accomplished with Householder reflections.
Example 4.4. Consider the matrix

B =


2 1 1
3 2 5
4 4 1

 .

We know that the following matrix will eliminate the last entry of the first column:

H =


1 0 0
0 3

5
4
5

0 4
5 −3

5


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Moreover, HBH has the same eigenvalues as B and

HBH =


2.00 1.40 0.20
5.00 5.68 1.24

0 2.24 −2.68


Once a matrix is in upper Hessenberg form, the QR factorisation can be computed via
Givens rotation.



DSA2102 NUMERICAL COMPUTATION Page 56 of 78

Chapter 5
Interpolation and Approximation

5.1
Polynomial Interpolation

Interpolation involves fitting a function to some data points. In contrast to
least squares regression, in interpolation problems, we want our function to match
the data exactly. For example, say we are given the population of Singapore in
1960, 1965, 1970, . . . , 2020, how can we estimate the population of Singapore in 1997?

The general interpolation problem can be phrased as follows. For an unknown function
f (x), given some data points on the graph of f (x) say (x0, y0) , . . . , (xn, yn), how can we
recover the original function f (x)? Alternatively, given x, how can we guess the value
of f (x)?

In contrast to predicting the population of a city, we take a look at another example.
Consider a specific case of the gamma function

g (x) =
∫ ∞

x
e−tt−1/2 dt and its approximation

√
π −

N∑
k=0

(−1)k xk+ 1
2

k!
(
k + 1

2

) .

The approximation is inefficient for large x. Instead, one can try to interpolate the
function.

To really have a fruitful discussion on polynomial interpolation, we first need to formulate
the problem more precisely. The approximation is usually a function with a number of
parameters, say

(ax + b) sin (cx + d) exp
(

ex + f

gx + h

)
.

There are several criteria we would like this to satisfy, namely the formula should be
determined by our prior knowledge of the function, the parameters are to be determined
by the data points, the function must not be difficult to evaluate (the idea of simplicity),
and the formula must be able to approximate a sufficiently wide range of functions
(approximability).

Some common choices for approximating functions are as follows:
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(i) Trigonometric functions† which have the general form

a0 +
n∑

k=1
[ak cos (kx) + bk sin (kx)]

(ii) Rational functions which have the general form

a0 + a1x + . . . + amxm

b0 + b1x + . . . + bnxn

(iii) Polynomials which have the general form a0 + a1x + . . . + amxm

Here, we will only focus on polynomial interpolation. We say that a polynomial of degree
m is of the form

Pm (x) = a0 + a1x + a2x2 + . . . + amxm =
m∑

k=0
akxk. (5.1)

When evaluating a polynomial function on a computer, a naïve approach requires m

additions and m(m+1)
2 multiplications. We discuss Horner’s method, which would only

yield m additions and m multiplications. To execute this, take a polynomial Pm as in
(5.1) and rewrite it as

Pm (x) = a0 + x (a1 + x (a2 + x (a3 + . . . + x (am−1 + xam) . . .))) .

Horner’s method is expected to have only m additions and m multiplications. We can
express this method iteratively as follows:

pm = am and pm−1 = am−1 + xpm and so on.

We then introduce Weierstrass’ approximation theorem (Theorem 5.1).

Theorem 5.1 (Weierstrass approximation theorem). Let f be a continuous function
on [a, b]. For any ε > 0, there exists a polynomial p (x) such that

|f (x)− p (x)| < ε for all x ∈ [a, b] .

What Theorem 5.1 is saying is that polynomials can approximate any continuous
function defined on a finite closed interval up to any precision. To get higher accuracy,
we usually require a polynomial of a higher degree. Unfortunately, the theorem does not
guarantee whether f (x) and P (x) agree on any points.

The interpolation problem can be formally stated as follows:
†Related to Fourier series.
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For an unknown function f (x), suppose the values of f (x0) , . . . , f (xn) are
given. Find a polynomial Pd (x) of degree d such that Pd (xi) = f (xi) for all
0i ≤ n. The points x0, . . . , xn are called nodes and the polynomial Pd is the
interpolant or the interpolating polynomial.

Assume that Pd (x) = a0 + a1x + . . . + adxd. We wish to find a0, a1, . . . , ad such that

a0 + a1x0 + . . . + adxd
0 = f (x0)

a0 + a1x1 + . . . + adxd
1 = f (x1)
... =

...
a0 + a1xn + . . . + adxd

n = f (xn)

The above system can be written as Xa = f , where a = (a0, . . . , ad), f =
(f (x0) , . . . , f (xn)), and X denotes the following Vandermonde matrix in (5.2). Note
that it is said to be Vandermonde because the terms in each row form a geometric
progression.

X =


1 x0 x2

0 . . . xd
0

1 x1 x2
1 . . . xd

1
...

...
... . . . ...

1 xn x2
n . . . xd

n

 . (5.2)

Given the equation for the coefficients of the interpolant Xa = f , we would first like to
know if the solution exists. If it does, is the solution unique? Next, can we find the vector
a efficiently, and are there any other representations of the interpolating polynomial?

For existence and uniqueness, recall that 2 points uniquely determine a line, 3 points
determine a unique quadratic, 4 points determine a unique cubic, and so on. As such,
if we are trying to fit a polynomial of degree d to a set of points, a solution exists as
long as there are no more than d + 1 points, and the solution is unique as long as there
are at least d + 1 points. General questions of existence, uniqueness, and conditioning
depend on the basis matrix X. As is typical with vector spaces, there are many possible
choices of bases for the collection of polynomials. We begin our discussion with the most
familiar basis, also known as the monomial basis.

Let Mk (x) = xk. Note that the functions M0 (x) , . . . , Md (x) span the space of
polynomials of degree at most d. So, we write

p (x) = a0 + a1x + . . . + adxd = a0M0 + a1M1 + . . . + adMd.



DSA2102 NUMERICAL COMPUTATION Page 59 of 78

The (n + 1)× (d + 1) Vandermonde matrix is

X =


M0 (x0) M1 (x0) . . . Md (x0)
M0 (x1) M1 (x1) . . . Md (x1)

...
... . . . ...

M0 (xn) M1 (xn) M2 (xn) . . . Md (xn)

 .

Note that computing Xa is polynomial evaluation, whereas solving Xa = f is polynomial
interpolation. If d = n, then Xa = 0 implies that the polynomial has d + 1 roots, but it
is only degree d, so X must be invertible. We illustrate with an example (see Example
5.1).

Example 5.1. Consider the data points (−2,−27), (0,−1) and (1, 0). We wish to fit a
quadratic polynomial p (x) = a0 + a1x + a2x2. So, we have


1 x0 x2

0
1 x1 x2

1
1 x2 x2

2




a0

a1

a2

 =


y0

y1

y2

 so


1 −2 4
1 0 0
1 1 1




a0

a1

a2

 =


−27
−1
0

 .

The coefficient matrix is invertible so solving the matrix equation yields the polynomial
p (x) = −1 + 5x− 4x2.

We then discuss the method of Lagrange interpolation. To begin our discussion, we
consider an alternative set of basis functions. Let x0, x1, . . . , xn be the interpolation
nodes. Assume the functions φ0 (x) , . . . , φn (x) satisfy φi (xj) = 1 if i = j, and 0
otherwise, for all 1 ≤ i, j ≤ n. Explicitly, we have

φ0 (x0) = 1 φ0 (x1) = 0 . . . φ0 (xn) = 0
φ1 (x0) = 0 φ1 (x1) = 1 . . . φ1 (xn) = 0

...
... . . . ...

φn (x0) = 0 φn (x1) = 0 . . . φn (xn) = 1

.

Then, the function

I (x) =
n∑

k=0
f (xk) φk (x) (5.3)

is an interpolating function for the data points (xk, f (xk)). We can choose a set of
polynomial basis functions with this property, which is known as the Lagrange basis.
For x0 = 1, x1 = 2, x2 = 3, and x3 = 4, the following polynomials satisfy the property
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in (5.3):

L0 (x) = (x− 2) (x− 3) (x− 4)
(1− 2) (1− 3) (1− 4)

L1 (x) = (x− 1) (x− 3) (x− 4)
(2− 1) (2− 3) (2− 4)

L2 (x) = (x− 1) (x− 2) (x− 4)
(3− 1) (3− 2) (3− 4)

L3 (x) = (x− 1) (x− 2) (x− 3)
(4− 1) (4− 2) (4− 3)

These functions are called the Lagrange basis polynomials.

Definition 5.1 (Lagrange interpolating polynomial). We consider a more general
setup. Let x0, x1, . . . , xn be n + 1 distinct real numbers. For k = 0, 1, . . . , n, the
kth Lagrange basis polynomial Lk (x) is a polynomial of degree n defined by

Lk (x)=

n∏
j=0
j ̸=k

x− xj

xk − xj
= (x− x0) . . . (x− xk−1) (x− xk+1) . . . (x− xn)

(xk − x0) . . . (xk − xk−1) (xk − xk+1) . . . (xk − xn) . (5.4)

The interpolating polynomial is given by

Pn (x) =
n∑

k=0
f (xk) Lk (x) .

The basis matrix in this case is the (n + 1)× (n + 1) identity matrix I.

Example 5.2 (Lagrange interpolation). Consider the data points (−2,−27), (0,−1) and
(1, 0). We seek a polynomial

p (x) = y0L0 (x) + y1L1 (x) + y2L2 (x) .

By (5.4), we have

p (x) = y0
(x− x1) (x− x2)

(x0 − x1) (x0 − x2) + y1
(x− x0) (x− x2)

(x1 − x0) (x1 − x2) + y2
(x− x0) (x− x1)

(x2 − x0) (x2 − x1) .

Substituting x0, x1, x2, y0, y1, y2 yields p (x) = −4x2 + 5x− 1.
Example 5.3. For a more interesting example, we consider the gamma function

Γ (x) =
∫ ∞

0
e−ttx−1 dt.

Using integration by parts, one can deduce that Γ (n) = (n− 1)!. As such, we shall
consider the data points Γ (1) = 1, Γ (2) = 1, Γ (3) = 2, and Γ (4) = 6. We shall fit a
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polynomial using the Lagrange basis, so

L0 (x) = (x− 2) (x− 3) (x− 4)
(1− 2) (1− 3) (1− 4) = −1

6 (x− 2) (x− 3) (x− 4)

L1 (x) = (x− 1) (x− 3) (x− 4)
(2− 1) (2− 3) (2− 4) = 1

2 (x− 1) (x− 3) (x− 4)

L2 (x) = (x− 1) (x− 2) (x− 4)
(3− 1) (3− 2) (3− 4) = −1

2 (x− 1) (x− 2) (x− 4)

L3 (x) = (x− 1) (x− 2) (x− 3)
(4− 1) (4− 2) (4− 3) = 1

6 (x− 1) (x− 2) (x− 3)

So, the Lagrange interpolating polynomial is

P3 (x) = L0 (x) + L1 (x) + 2L2 (x) + 6L3 (x) .

The third common set of basis functions is called the Newton basis. Say we have a
set of points (xi, yi) where 0 ≤ i ≤ n. The Newton basis functions are defined to be

Ni (x) =
i−1∏
k=0

(x− xk) .

The first few basis functions are

N0 (x) = 1
N1 (x) = x− x0

N2 (x) = (x− x0) (x− x1)

and so on. The basis matrix is the lower triangular matrix
1 0 . . . 0
1 x1 − x0 . . . 0
...

... . . . ...
1 xn − x0 . . . (xn − x0) . . . (xn − xn−1)


Example 5.4. Consider the data points (−2,−27), (0,−1), and (1, 0). We seek a
polynomial of the form

p (x) = a0N0 (x) + a1N1 (x) + a2N2 (x) ,

thus forming the matrix equation
1 0 0
1 x1 − x0 0
1 x2 − x0 (x2 − x0) (x2 − x1)




a0

a1

a2

 =


y0

y1

y2

 .
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Hence,


1 0 0
1 2 0
1 3 3




a0

a1

a2

 =


−27
−1
0

 .

The coefficient matrix is invertible so one can deduce that

p (x) = −27 + 13 (x + 2)− 4 (x + 2) x = −1 + 5x− 4x2.

One should note that the Newton basis functions have a nice incremental property
— if we add new data points, we do not need to redo what we have done earlier. For
example, if we start with (−2,−27), our interpolating polynomial is

p0 (x) = a0N0 (x) = −27.

Adding the point (0,−1), our interpolating polynomial is

p1 (x) = p0 (x) + a1N1 (x) = −27 + 13 (x + 2)

and one can recursively perform the aforementioned step to new data points in order to
obtain new interpolating polynomials.

What happens when the basis matrix is not square? If m > n, the equations can be
written as

a0 + a1x0 + . . . + anxn
0 = b0 − an+1xn+1

0 − . . .− amxm
0

a0 + a1x1 + . . . + anxn
1 = b1 − an+1xn+1

1 − . . .− amxm
1

... =
...

a0 + a1xn + . . . + anxn
n = bn − an+1xn+1

n − . . .− amxm
n

We can solve for a0, a1, . . . , an in terms of an+1, . . . , am. To conclude, the system has
infinite solutions.
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If m < n, the equations can be written as

a0 + a1x0 + . . . + amxm
0 = b0

a0 + a1x1 + . . . + amxm
1 = b1

... =
...

a0 + a1xm + . . . + amxm
m = bm

a0 + a1xm+1 + . . . + amxm
m+1 = bm+1

... =
...

a0 + a1xn + . . . + amxm
n = bn

The first m equations have already determined the solution. The solution of the complete
system exists only if the solution satisfies the last n−m equations.

5.2
Piecewise Interpolation

So far, we have only asked that the interpolating polynomial match the function
values at the nodes. What if we also want the polynomial to match the slope of the
function at the nodes? Then, we will also need to know f ′ (x0) , . . . , f ′ (xn). What degree
polynomial do we need? We have 2n + 2 conditions, so the degree of the polynomial
would need to be 2n + 1.

Recall from MA2002 Calculus that given an infinitely differentiable function f , its Taylor
series at x = a is

f (a) + f ′ (a) (t− a) + f ′′ (a)
2! (t− a)2 + . . . + f (k) (a)

k! (t− a)k + . . . .

We define the nth Taylor polynomial of f at a to be

pn (t) = f (a) + +f ′ (a) (t− a) + f ′′ (a)
2! (t− a)2 + . . . + f (n) (a)

n! (t− a)n .

The Taylor polynomial, which can be interpreted as a finite series, has the property that
p (a) = f (a), p′ (a) = f ′ (a), p′′ (a) = f ′′ (a) and so on. Note that we need a polynomial
of degree n to match the function value at a and the values of the first n derivatives at
a. In what follows, we will use the idea of putting constraints on the derivatives, though
we will generally only look at first and second derivatives.

Suppose we are given the data points (xk, yk) for k = 0, 1, . . . , n. We would like to find
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a continuous piecewise linear function f (x) such that f (xk) = yk for all 1 ≤ k ≤ n and
f (x) is a linear function on (xk−1, xk) for all 1 ≤ k ≤ n.

We first discuss interpolation using piecewise linear functions. Recall that the equation
of a line through the points (a, b) and (c, d) is

y = b + d− b

c− a
(x− a) .

As such, we have

f (x) =



y0 + y1 − y0
x1 − x0

(x− x0) if x ∈ [x0, x1] ;

y1 + y2 − y1
x2 − x1

(x− x1) if x ∈ (x1, x2] ;
...

...

yn−1 + yn − yn−1
xn − xn−1

(x− xn−1) if x ∈ (xn−1, xn]

(5.5)

x

y

Figure 1: Interpolation using piecewise linear functions

So far, we have only asked that the interpolating polynomial match the function
values at the nodes. What if we also want the polynomial to match the slope of the
function at the nodes? Then, we will also need to know f ′ (x0) , . . . , f ′ (xn). What degree
polynomial do we need? We have 2n + 2 conditions, so the degree of the polynomial
would need to be 2n + 1.
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We then discuss piecewise constant interpolation. Given data points (x0, y0) , . . . , (xn, yn)
with nodes ordered increasingly, define for each i

ai = xi − xi−1
2 and bi = xi+1 − xi

2 ,

and set f (x) = yi for ai ≤ x < bi. This interpolant is, in general, not continuous.
Example 5.5. For the data (0, 1) , (2, 3) , (4,−2) , (6, 0), we have

f (x) =



1 if x < 1;
3 if 1 ≤ x < 3;
−2 if 3 ≤ x < 5;
0 if x ≥ 5.

This is not a continuous function.
We now consider a slightly different interpolant in contrast to (5.5). Given

(x0, y0) , . . . , (xn, yn), on each interval [xi, xi+1] use the secant line

f (x) = yi+1
x− xi

xi+1 − xi
+ yi

xi+1 − x

xi+1 − xi
, where xi ≤ x ≤ xi+1.

This interpolant is continuous but generally not differentiable at the nodes.
Example 5.6. For (0, 1) , (2, 3) , (4,−2) , (6, 0), we have

f (x) =


1 + x if 0 ≤ x ≤ 2;
3− 5

2 (x− 2) if 2 ≤ x ≤ 4;
−2 + (x− 4) if 4 ≤ x ≤ 6.

We then discuss piecewise quadratic interpolation. The idea is to fit parabolas

fj (x) = ajx2 + bjx + cj

to triples (xi, yi) , (xi+1, yi+1) , (xi+2, yi+2) via

yi = ajx2
i + bjxi + cj yi+1 = ajx2

i+1 + bjxi+1 + cj yi+2 = ajx2
i+2 + bjxi+2 + cj .

This is still generally not differentiable at the junctions and is often no better than the
piecewise linear interpolant between nodes. Note that to fit n quadratics without extra
constraints, one needs 2n + 1 points.
Example 5.7. For (0, 1) , (2, 3) , (4,−2) , (6, 0), one convenient choice is

f1 (x) = 1 + 11
4 x− 7

8x2 and f2 (x) = 15− 31
4 x + 7

8x2.
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As for differentiable piecewise quadratic interpolation, the idea is to use two adjacent
points per quadratic but enforce derivative matching at the shared node. Let

fi (x) = aix
2 + bix + ci.

Impose, for consecutive intervals [xi, xi+1] and [xi+1, xi+2],

yi = aix
2
i + bixi + ci

yi+1 = aix
2
i+1 + bixi+1 + ci

yi+1 = ai+1x2
i+1 + bi+1xi+1 + ci+1

yi+2 = ai+1x2
i+2 + bi+1xi+2 + ci+1

2aixi+1 + bi = 2ai+1xi+1 + bi+1

We have six unknowns and five equations; add the condition that second derivatives
match at the midpoint (equivalently ai = ai+1). We now discuss piecewise cubic spline
interpolation. The idea is to fit cubics

fj (x) = ajx3 + bjx2 + cjx + dj ,

to quadruples by solving

yi = ajx3
i + bjx2

i + cjxi + dj

yi+1 = ajx3
i+1 + bjx2

i+1 + cjxi+1 + dj

yi+2 = ajx3
i+2 + bjx2

i+2 + cjxi+2 + dj

yi+3 = ajx3
i+3 + bjx2

i+3 + cjxi+3 + dj

Same degrees-of-freedom issues as the quadratic case; instead, we can use fewer points
per cubic and impose smoothness conditions.
Example 5.8 (unique cubic through four points). For (0, 1) , (2, 3) , (4,−2) , (6, 0), we have

f (x) = 1 + 61
12x− 21

8 x2 + 7
24x3.

As for the method of natural cubic splines, we seek n− 1 cubics pi (x) on [xi, xi+1]
of the form

pi (x) = yi + bi (x− xi) + ci (x− xi)2 + di (x− xi)3 .

The conditions are as follows. First, we must interpolate the polynomial so pi (xi+1) =
yi+1. As the first and second derivatives must be continuous, then p′

i−1 (xi) = p′
i (xi) and

p′′
i−1 (xi) = p′′

i (xi). Lastly, we must fit the natural endpoints, so p′′ (x0) = p′′ (xn) = 0.
A straightforward formulation yields a 4 (n− 1)× 4 (n− 1) linear system, but it can be
reduced to a tridiagonal system. We omit the details.
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5.3
Orthogonal Polynomials

We then introduce the Chebyshev polynomials of the first kind, denoted by Tn (x).
These satisfy the recurrence relation

Tn+1 (x) = 2xTn (x)− Tn−1 (x) .

They are also orthogonal. That is to say,∫ 1

−1

Tn (x) Tm (x)√
1− x2

dx = 0 for m ̸= n.

We now explore the idea of orthogonality of functions in greater detail, and to do so, we
need to introduce what is called an inner product (Definition 5.2).

Definition 5.2 (inner product). Let V be a vector space over a field F . An inner
product is a function ⟨·, ·⟩ : V × V → F that satisfies the following properties:

(i) ⟨v, v⟩ ≥ 0 for all v ∈ V

(ii) ⟨v, v⟩ = 0 if and only if v = 0
(iii) ⟨u + v, w⟩ for all u, v, w ∈ V

(iv) ⟨αu, v⟩ = α ⟨u, v⟩ for all α ∈ F and u, v ∈ V

(v) ⟨u, v⟩ = ⟨v, u⟩ for all u, v ∈ V

Example 5.9. Some examples of inner products are as follows:
(i) We have the dot product on Rn. For any x, y ∈ Rn, we have

⟨x, y⟩ = xTy =
n∑

i=1
xiyi.

(ii) We have the dot product on Cn. For w, z ∈ Cn, we have

⟨w, z⟩ = z∗w =
n∑

i=1
wizi.

Here, z∗ denotes the complex conjugate of z.
(iii) We can also have an inner product on Mm×n R). For any matrices A, B ∈

Mm×n (R), define
⟨A, B⟩ = tr

(
ATB

)
.

We can also have inner products on random variables and functions. For example,

⟨X, Y ⟩ = E (XY ) where E (X) denotes the expectation of X.



DSA2102 NUMERICAL COMPUTATION Page 68 of 78

Also,
⟨f, g⟩ =

∫
f (x) g (x) dx.

Recall that a basis for a finite-dimensional vector space V is a set of vectors in V

that spans V and is linearly independent. If {v1, . . . , vn} is a basis for V , then every
v ∈ V has a unique representation

v = α1v1 + . . . + αnvn.

A set of vectors {e1, . . . , en} is said to be orthonormal if ⟨ei, ej⟩ = 1 for i = j and 0
if i ̸= j. If {e1, . . . , en} is an orthonormal basis for V , then every v ∈ V has a unique
representation

v = ⟨v, e1⟩ e1 + . . . + ⟨v, en⟩ en.

Note that representing vectors in terms of an orthonormal basis is more computationally
efficient than representing them in terms of non-orthonormal bases.

We then extend the idea of inner products and orthogonality to functions.

Definition 5.3 (inner product for continuous functions). For continuous functions f

and g on [a, b], define the inner product

⟨f, g⟩ =
∫ b

a
f (x) g (x) dx.

One can also integrate with respect to a certain weight function w (x) > 0, thus
yielding the inner product formula∫ b

a
f (x) g (x) w (x) dx.

Note that we will not consider integrating over R because for most polynomials, this is
either infinity or undefined.

Using the inner product defined in Definition 5.3, we can apply the Gram-Schmidt
process to polynomials. Say we consider the monomial basis

{
1, x, x2, . . . , xn

}
and the

inner product
⟨p, q⟩ =

∫ 1

−1
p (x) q (x) dx.

One can apply the Gram-Schmidt process to obtain a list of orthogonal polynomials
q0, . . . , qn as follows:

q0 (x) =
√

1
2 q1 (x) =

√
3
2x q2 (x) =

√
5
8
(
3x2 − 1

)
q3 (x) =

√
7
8
(
5x3 − 3x

)
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We then orthonormalise the polynomials. Instead of requiring ∥qi∥ = 1 in the usual sense
for vectors in Rn, it is typical to require qi (1) = 1. As such,

q0 (x) = 1 q1 (x) = x q2 (x) = 1
2
(
3x2 − 1

)
q3 (x) = 1

2
(
5x3 − 3x

)
In general, one can prove that

qn (x) = 1
2nn!

dn

dxn

(
x2 − 1

)n
(5.6)

In fact, the polynomials qn (x) are known as the Legendre polynomials, and the equation
in (5.6) is known as Rodrigues’ formula.

Proposition 5.1. In general, the Legendre polynomials satisfy the recurrence
relation

nqn (x) = (2n− 1) xqn−1 (x)− (n− 1) qn−2 (x) .

x

y

−1 −0.5 0.5 1

−1

−0.5

0.5

1

Figure 2: Graphs of P0(x), P1(x), P2(x), P3(x), P4(x) on [−1, 1]

The Chebyshev polynomials of the first kind, defined by the inner product

⟨p, q⟩ =
∫ 1

−1

p (x) q (x)√
1− x2

dx,

are also interesting. Consider the orthogonal polynomials produced by the Gram-Schmidt
process equipped with the mentioned inner product, thus producing the polynomials
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T0, . . . , Tn, where

T0 (x) = 1 T1 (x) = x T2 (x) = 2x2 − 1 T3 (x) = 4x3 − 3x.

The Chebyshev polynomials of the second kind can also be defined by

Tn (x) = cos (n arccos x) .

Proposition 5.2. The Chebyshev polynomials of the first kind satisfy the
recurrence relation

Tn (x) = 2xTn−1 (x)− Tn−2 (x) .

x

y

−1 −0.5 0.5 1

−1

−0.5

0.5

1

Figure 3: Graphs of T0 (x), T1 (x), T2 (x), T3 (x), T4 (x)

In Numerical Analysis, the most commonly encountered orthogonal polynomials
are the Legendre polynomials, Chebyshev polynomials, Laguerre polynomials, and the
Hermite polynomials. All orthogonal polynomials satisfy a three-term recurrence rela-
tion. Orthogonal polynomials have advantages for least squares polynomial fitting, and
they are applied in numerous branches of Mathematics such as Differential Equations,
Probability Theory, Physics, etc.
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Chapter 6
Numerical Integration and Differentiation

6.1
Newton-Cotes Quadrature Rules

Now, our discussion shifts to the evaluation of the integral∫ b

a
f (x) dx. (6.1)

Integrals of the form in (6.1) can be evaluated using series expansion. However, the series
is not always available. Even worse, sometimes the function f (x) is provided as a black
box, meaning to say that we can access its values but not have its analytical expression.
In this case, a commonly-used technique is to find several function values f (x) and then
approximate f (x) by interpolation. Afterwards, we integrate the interpolating function
and use the result as the numerical approximation of the integral.

One should recall the two fundamental theorems of Calculus, which we shall not state.
Many problems in Applied Mathematics involve computing definite integrals, and here
we present a few that are particularly relevant to Data Science. In Probability Theory,
if X and Y are continuous random variables and X has density f , we can compute the
probability that X lies in some interval using

P (a ≤ X ≤ b) =
∫ b

a
f (x) dx.

We can also compute the expected value of X using

E (X) =
∫
R

xf (x) dx.

If X and y have joint density function g, then the marginal distributions are computed
using

gX (x) =
∫
R

g (x, y) dy and gY (y) =
∫
R

g (x, y) dx.

For distributions whose densities are not very nice, or even unknown, these integrals must
be computed numerically rather than analytically. For example, the Laplace transform

L (f) (t) =
∫ ∞

0
e−xtf (x) dx
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has applications in designing circuits and signal processing. Furthermore, in Probability
Theory, the moment generating function of a random variable is the Laplace transform
of the probability density function.

The Fourier transform
F (f) (t) =

∫ ∞

−∞
e−2πitxf (x) dx

has applications in differential equations, signal processing and Quantum Mechanics.
Moreover and again in Probability Theory, the characteristic function of a random
variable is the Fourier transform of the probability density function†.

Certain important functions do not have closed form representations in terms of other
elementary functions, and are instead defined by integrals. For example, we have the
gamma function

Γ (t) =
∫ ∞

0
e−xxt−1 dx,

the beta function
B (a, b) =

∫ 1

0
xa−1 (1− x)b−1 dx,

and the error function
Φ (t) = 2√

π

∫ t

0
e−x2

dx.

These have applications in Probability Theory too.

Recall from MA2002 Calculus that one standard way of defining the definite integral
is using Riemann sums. On the interval [a, b], we define h = b−a

n and set xk = a + hk for
k = 0, 1, . . . , n. We then define the left and right Riemann sums to be

Ln =
n−1∑
k=0

hf (xk) andRn =
n∑

k=1
hf (xk) respectively.

If

lim
n→∞

Rn = lim
n→∞

Ln = I, (6.2)

we say that f is Riemann integrable on [a, b] and we write∫ b

a
f (x) dx = I.

(6.2) is informally known as the Riemann integrability criterion. There is a more
mathematically rigorous way to state it, but it is taught in MA3210 Mathematical

†In fact, this is the typical way of proving the central limit theorem
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Analysis II. Anyway, this suggests one way of approximating the integral: take relatively
large n and compute the Riemann sums.
Example 6.1. For example, we consider the function f (x) =

√
1 + x2 on [−1, 1]. One

can use a Pythagorean identity to evaluate∫ 1

−1
f (x) dx ≈ 2.2956

and in fact obtain the exact value. As mentioned, we can obtain an approximation. We
leave it to the reader to compute Ln and Rn for n = 1, 2, 3 but it is apparent that for
larger n, Ln and Rn will converge to the true value. However, it will converge relatively
slowly in practice, so we can attempt to use other methods.

We shall introduce other methods of numerical integration but before that, we discuss
the existence, uniqueness, and conditioning of the problem. First, if f is bounded on [a, b]
and continuous at all but countably many points on [a, b], then the Riemann integral
exists†. Since the integral is defined using a limit and limits are unique when they exist,
uniqueness is built into the definition. For condition, we need a way to measure the size
of a function. Define

∥f∥∞ = max
x∈[a,b]

|f (x)| and
∫ b

a
f (x) dx = I (f) .

If f̃ is a perturbation of f , then we have∣∣∣I (f)− I
(
f̃
)∣∣∣ ≤ (b− a)

∥∥∥f − f̂
∥∥∥

∞
.

That is, the error is proportional to the size of the interval. Many numerical integration
methods are referred to as quadrature. This means that we use quadrilaterals to
approximate integrals.

Definition 6.1 (quadrature rule). An n point quadrature rule is of the form

Qn (f) =
n∑

i=1
wif (xi)

with coefficients or weights wi, and nodes or abscissas xi.

As mentioned before, there is a connection between numerical integration and
interpolation. Given points (xi, f (xi)) where i = 0, 1, . . . , n, we can fit a polynomial to
these data, and definite integrals of polynomials can be evaluated easily. Let ℓ1, . . . , ℓn

†This is the Lebesgue-Vitali theorem.
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be the Lagrange basis functions and interpolate

p (x) =
n∑

i=1
f (xi) ℓi (x) .

Then, one can easily show that
∫ b

a
p (x) dx =

n∑
i=0

wif (xi) . (6.3)

We have thus obtained a quadrature rule. Alternatively, we can develop another
quadrature rule as follows. Suppose we seek a quadrature rule that integrates polynomials
of degree n and below exactly. That is, we want the equation (6.3) to be true for
polynomials of degree n and below. In particular, if we apply this to the monomial
basis

{
1, x, x2, . . . , xn

}
, we have
∫ b

a
dx = b− a = w0 · 1 + . . . + wn · 1∫ b

a
x dx = b2 − a2

2 = w0 · x0 + . . . + wn · xn

... =
...∫ b

a
xn dx = bn+1 − an+1

n + 1 = w0 · xn
0 + . . . + wn · xn

n

This leads to the system of equations
1 1 . . . 1
x0 x1 . . . xn

...
... . . . ...

xn
0 xn

1 . . . xn
n




w0

w1
...

wn

 =


b− a
b2−a2

2
...

bn+1−an+1

n+1


The transpose of the coefficient matrix is a Vandermonde matrix. When we choose the
nodes x0, . . . , xn to be equally spaced, we call the resulting quadrature a Newton-Cotes
rule. We will investigate quadrature rules with n = 0, 1, 2, 3. Note that n is the degree of
the rule, not the number of nodes. Here, the degree refers to the degree of the underlying
interpolating polynomial. Also, closed Newton-Coates rules include the endpoints a and
b, whereas open rules do not.

Proposition 6.1 (midpoint rule). When we sample at only one point x0 = b−a
2 , this

corresponds to interpolation by a constant polynomial. Our example of the integral
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is given by
M (f) = (b− a) f

(
a + b

2

)
.

This is known as the midpoint rule.

We then introduce the trapezium rule (Proposition 6.2), which involves sampling at
x0 = a and x1 = b. This corresponds to interpolation by a linear polynomial. Note that
the line through the points (a, f (a)) and (b, f (b)) is given by

p (x) = f (a) x− b

a− b
+ f (b) x− a

b− a
.

Integrating and simplifying yields Proposition 6.2.

Proposition 6.2 (trapezium rule). We have

T (f) = b− a

2 (f (a) + f (b)) .

When we sample at x0 = a, x1 = a+b
2 and x2 = b, this corresponds to interpolation

by a quadratic polynomial. The formula is given by

p (x) = f (a) (x−m) (x− b)
(a−m) (a− b) + f (m) (x− a) (x− b)

(m− a) (m− b) + f (b) (x− a) (x−m)
(b− a) (b−m) .

Integrating and simplifying yields Proposition 6.3.

Proposition 6.3 (Simpson’s rule). We have

S (f) = b− a

6 (f (a) + 4f (m) + f (b))

where m = a+b
2 .

Recall the identity
S (f) = 2

3M (f) + 1
3T (f) .

Lastly, when we sample at x0 = a, x1 = 2a+b
3 , x2 = a+2b

3 , and x3 = b, this corresponds
to interpolation by a cubic polynomial. This yields Simpson’s 3/8 rule (Proposition 6.4).

Proposition 6.4 (Simpson’s 3/8 rule). We have

Θ (f) = b− a

8

(
f (a) + 3f

(2a + b

3

)
+ 3f

(
a + 2b

3

)
+ f (b)

)
.
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Example 6.2. On [0, 1],
∫ 1

0 exdx = e− 1 ≈ 1.71828.

M (ex) = e1/2 ≈ 1.64872, T (ex) = 1
2 (1 + e) ≈ 1.85914,

S (ex) = 1
6

(
1 + 4e1/2 + e

)
≈ 1.71886, Θ (ex) = 1

8

(
1 + 3e1/3 + 3e2/3 + e

)
≈ 1.71854.

Absolute errors are about 0.0696, 0.1409, 0.00058, and 0.00026, respectively.
We now discuss error expansions via a midpoint Taylor series. We expand about

m = a+b
2 to obtain

f (x) = f (m) + f ′ (m) (x−m) + f ′′ (m)
2 (x−m)2 + f (3) (m)

6 (x−m)3 + f (4) (m)
24 (x−m)4 + . . . .

By symmetry, the odd powers integrate to 0. Writing h = b−a
2 , one obtains∫ b

a
f (x) dx = (b− a) f (m) + f ′′ (m)

24 (b− a)3 + f (4) (m)
1920 (b− a)5 + . . .

Hence the single-panel error formulas are∫ b

a
f −M (f) = f ′′ (m)

24 (b− a)3 + f (4) (m)
1920 (b− a)5 + . . . T (f)−

∫ b

a
f = f ′′ (m)

12 (b− a)3 + f (4) (m)
480 (b− a)5 + . . . S (f)−

∫ b

a
f = −f (4) (m)

2880 (b− a)5 + . . . Θ (f)−
∫ b

a
f = f (4) (m)

6480 (b− a)5 + . . .

Consequently, if |f ′′ (x)| ≤ c on [a, b], then∣∣∣∣∣
∫ b

a
f −M (f)

∣∣∣∣∣ ≤ c

24 (b− a)3 and
∣∣∣∣∣
∫ b

a
f − T (f)

∣∣∣∣∣ ≤ c

12 (b− a)3 .

If
∣∣∣f (4) (x)

∣∣∣ ≤ c on [a, b], then∣∣∣∣∣
∫ b

a
f − S (f)

∣∣∣∣∣ ≤ c

2880 (b− a)5 and
∣∣∣∣∣
∫ b

a
f −Θ (f)

∣∣∣∣∣ ≤ c

6480 (b− a)5 .

We can generalise Propositions 6.1, 6.2, 6.3 using composite Newton-Cotes rules.
Partition [a, b] into k panels of length h = b−a

k , with nodes xj = a + jh. The composite
midpoint rule states that

Mk (f) = h
k∑

j=1
f

(
xj−1 + xj

2

)
.

The composite trapezium rule states that

Tk (f) = h

2

f (a) + f (b) + 2
k−1∑
j=1

f (xj)

 .

Lastly, the composite Simpson’s rule with 2k panels states the following, where we let
h = b−a

2k :

S2k (f) = h

3

f (a) + f (b) + 4
k∑

j=1
f (x2j−1) + 2

k−1∑
j=1

f (x2j)


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Example 6.3. On [0, π] with two panels for midpoint and trapezium:

M2 (sin x) = π

2
(√

2
2 +

√
2

2

)
=
√

2π

2 ≈ 2.22, T2 (sin x) = π

4 (0 + 0 + 2) = π

2 ≈ 1.57,

while
∫ π

0
sin xdx = 2.

Let
Qn (f) =

n∑
i=0

wif (xi)

with equally spaced xi. If all wi > 0, then
n∑

i=0
|wi| =

n∑
i=0

wi = b− a.

For sufficiently large n, at least one weight is negative and

lim
n→∞

n∑
i=0
|wi| ,

reflecting instability on equally spaced nodes. A practical alternative is Clenshaw–Curtis
quadrature, which samples at Chebyshev extrema and is equivalent to∫ 1

−1
f (x) dx =

∫ π

0
f (cos θ) sin θ dθ.

6.2
Numerical Differentiation

Numerical differentiation is often simpler than numerical integration, but it is
typically ill-conditioned: small perturbations in data can be amplified, and catastrophic
cancellation is hard to avoid when subtracting nearby values.

Recall that the derivative at x is

f ′ (x) = lim
h→0

f (x + h)− f (x)
h

.

We use numerical differentiation when we only have discrete samples, when there is no
closed form for f , or when the exact formula is more costly than an approximation. From
the definition, we have

forward difference f ′ (x) ≈ f (x + h)− f (x)
h

backward difference f ′ (x) ≈ f (x)− f (x− h)
h

central difference f ′ (x) ≈ f (x + h)− f (x− h)
2h
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Many handheld calculators use the central formula with h = 0.001. Applying backward
to forward difference yields the three-point second derivative:

f ′′ (x) ≈ f (x + h)− 2f (x) + f (x− h)
h2 .

Taylor’s theorem on [x, x + h] gives

f (x + h) = f (x) + f ′ (x) h + f ′′ (a)
2 h2 for some a ∈ (x, x + h) .

Solving for f ′ (x) yields the forward difference with an explicit remainder

f ′ (x) = f (x + h)− f (x)
h

− f ′′ (a)
2 h.

More generally, with higher smoothness,

Forward: f ′ (x) = f (x + h)− f (x)
h

− f ′′ (ξ+)
2 h,

Backward: f ′ (x) = f (x)− f (x− h)
h

+ f ′′ (ξ−)
2 h,

Central: f ′ (x) = f (x + h)− f (x− h)
2h

− f (3) (η)
6 h2,

for some ξ+, ξ−, η between x− h and x + h. Thus forward and backward are first order
in h, while central is second order.

Proposition 6.5 (balancing truncation and rounding). If |f ′′ (t)| ≤M near x, the
forward truncation error is at most 1

2Mh. If each function value has absolute error
at most ε, the subtraction in (f (x + h)− f (x)) contributes rounding error ≤ 2ε/h.
The total bound

E (h) ≤ 1
2Mh + 2ε

h

is minimised at h∗ = 2
√

ε/M .
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